Hierarchical deep neural network for mental stress state detection using IoT based biomarkers

被引:38
|
作者
Kumar, Akshi [1 ]
Sharma, Kapil [2 ]
Sharma, Aditi [1 ]
机构
[1] Delhi Technol Univ, Dept CSE, Delhi 110042, India
[2] Delhi Technol Univ, Dept IT, Delhi 110042, India
关键词
Deep learning; IoT sensors; Biomarkers; Mental health; Stress;
D O I
10.1016/j.patrec.2021.01.030
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Affective state recognition at an early stage can help in mood stabilization, stress and depression management for mental well-being. Pro-active and remote mental healthcare warrants the use of various biomarkers to detect the affective mental state of the individual by evaluating the daily activities. With the easy accessibility of IoT-based sensors for healthcare, observable and quantifiable characteristics of our body, physiological changes in the body can be measured and tracked using various wearable devices. This work puts forward a model for mental stress state detection using sensor-based bio-signals. A multi-level deep neural network with hierarchical learning capabilities of convolution neural network is proposed. Multivariate time-series data consisting of both wrist-based and chest-based sensor bio-signals is trained using a hierarchy of networks to generate high-level features for each bio-signal feature. A model-level fusion strategy is proposed to combine the high-level features into one unified representation and classify the stress states into three categories as baseline, stress and amusement. The model is evaluated on the WESAD benchmark dataset for mental health and compares favourably to state-of-the-art approaches giving a superlative performance accuracy of 87.7%. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页码:81 / 87
页数:7
相关论文
共 50 条
  • [1] Anomaly Detection Using Deep Neural Network for IoT Architecture
    Ahmad, Zeeshan
    Khan, Adnan Shahid
    Nisar, Kashif
    Haider, Iram
    Hassan, Rosilah
    Haque, Muhammad Reazul
    Tarmizi, Seleviawati
    Rodrigues, Joel J. P. C.
    APPLIED SCIENCES-BASEL, 2021, 11 (15):
  • [2] Intrusion Detection in IoT Systems Based on Deep Learning Using Convolutional Neural Network
    Pham Van Huong
    Le Duc Thuan
    Le Thi Hong Van
    Dang Viet Hung
    PROCEEDINGS OF 2019 6TH NATIONAL FOUNDATION FOR SCIENCE AND TECHNOLOGY DEVELOPMENT (NAFOSTED) CONFERENCE ON INFORMATION AND COMPUTER SCIENCE (NICS), 2019, : 448 - 453
  • [3] Intrusion detection framework using stacked auto encoder based deep neural network in IOT network
    Sugitha, G.
    Preethi, B. C.
    Kavitha, G.
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2022, 34 (28):
  • [4] Healthcare IoT-Based Affective State Mining Using a Deep Convolutional Neural Network
    Alam, Md. Golam Rabiul
    Abedin, Sarder Fakhrul
    Moon, Seung Il
    Talukder, Ashis
    Hong, Choong Seon
    IEEE ACCESS, 2019, 7 : 75189 - 75202
  • [5] Augmenting IoT Intrusion Detection System Performance Using Deep Neural Network
    Sayed, Nasir
    Shoaib, Muhammad
    Ahmed, Waqas
    Qasem, Sultan Noman
    Albarrak, Abdullah M.
    Saeed, Faisal
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 74 (01): : 1351 - 1374
  • [6] Detection of Driver Fatigue State using Deep Neural Network
    Anwar, Noreen
    Xiong, Gang
    Guo, Miao
    Ye, Peijun
    Ali, Hub
    Wei, Qinglai
    PROCEEDINGS OF THE 2021 IEEE 16TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2021), 2021, : 79 - 84
  • [7] Network Flow Based IoT Anomaly Detection Using Graph Neural Network
    Wei, Chongbo
    Xie, Gaogang
    Diao, Zulong
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT II, KSEM 2023, 2023, 14118 : 432 - 445
  • [8] Intrusion Detection System Based on Fast Hierarchical Deep Convolutional Neural Network
    Mendonca, Robson V.
    Teodoro, Arthur A. M.
    Rosa, Renata L.
    Saadi, Muhammad
    Melgarejo, Dick Carrillo
    Nardelli, Pedro H. J.
    Rodriguez, Demostenes Z.
    IEEE ACCESS, 2021, 9 : 61024 - 61034
  • [9] Intrusion Detection System Based on Fast Hierarchical Deep Convolutional Neural Network
    Mendonca, Robson V.
    Teodoro, Arthur A. M.
    Rosa, Renata L.
    Saadi, Muhammad
    Melgarejo, Dick Carrillo
    Nardelli, Pedro H. J.
    Rodriguez, Demostenes Z.
    IEEE Access, 2021, 9 : 61024 - 61034
  • [10] Hierarchical neural network detection model based on deep context and attention mechanism
    Zhang, Yuxi
    Zhao, Yu
    INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2023, 18 (02) : 162 - 175