Quantum light transport in phase-separated Anderson localization fiber

被引:5
作者
Demuth, Alexander [1 ]
Camphausen, Robin [1 ]
Cuevas, Alvaro [1 ]
Borrelli, Nick F. [2 ]
Seward, Thomas P. [2 ]
Lamberson, Lisa [2 ]
Koch, Karl W. [2 ]
Ruggeri, Alessandro [3 ]
Madonini, Francesca [4 ]
Villa, Federica [4 ]
Pruneri, Valerio [1 ,5 ]
机构
[1] Barcelona Inst Sci & Technol, ICFO Inst Ciencies Foton, Barcelona 08860, Spain
[2] Corning Inc, Sci & Technol Div, Corning, NY 14831 USA
[3] Micro Photon Devices SRL, Via Waltraud Gebert Deeg 3f, I-39100 Bolzano, Italy
[4] Politecn Milan, Dipartimento Elettron Informaz & Bioingn, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
[5] ICREA Inst Catalana Recerca & Estudis Avancats, Passeig Lluis Co 23, Barcelona 08010, Spain
关键词
IMAGE TRANSPORT; OPTICAL-FIBERS;
D O I
10.1038/s42005-022-01036-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Anderson localization, a strong localization effect that prevents wave diffusion, is fundamentally important in manipulating wave propagation in a disordered medium. This work uses a phase separated glass Anderson localization optical fiber and demonstrates quantum light transport, which shows the potential for transmission of high dimensional quantum information, thereby enabling quantum imaging and quantum communication applications. Propagation of light by Anderson localization has been demonstrated in micro-nano-structured fibers. In this work, we introduce a phase separated glass Anderson localization optical fiber for quantum applications. By using a spontaneous parametric down-conversion source, multi-photon detection with a single-photon avalanche diode array camera, and signal post-processing techniques, we demonstrate quantum light transport, where spatial correlations between photon pairs are preserved after propagation. In order to better understand and improve light transport, we study light localization, observing a dependence on wavelength. Our results indicate that the proposed phase separated fiber may become an effective platform for quantum imaging and communication.
引用
收藏
页数:9
相关论文
共 41 条
[1]   Modal area statistics for transverse Anderson localization in disordered optical fibers [J].
Abaie, Behnam ;
Mafi, Arash .
OPTICS LETTERS, 2018, 43 (16) :3834-3837
[2]  
Abdullaev S.S., 1980, Radio_zika, V23, P766
[3]  
Abrmoff M.D., 2004, BIOPHOTONICS INT, V11, P36, DOI DOI 10.1201/9781420005615.AX4
[4]   ABSENCE OF DIFFUSION IN CERTAIN RANDOM LATTICES [J].
ANDERSON, PW .
PHYSICAL REVIEW, 1958, 109 (05) :1492-1505
[5]  
[Anonymous], 1960, Progress in Semiconductors
[6]  
Chen M., 2014, PHOTONIC PHONONIC PR, V8994, P176
[7]   Two-photon quantum walk in a multimode fiber [J].
Defienne, Hugo ;
Barbieri, Marco ;
Walmsley, Ian A. ;
Smith, Brian J. ;
Gigan, Sylvain .
SCIENCE ADVANCES, 2016, 2 (01)
[8]   TRANSVERSE LOCALIZATION OF LIGHT [J].
DERAEDT, H ;
LAGENDIJK, A ;
DEVRIES, P .
PHYSICAL REVIEW LETTERS, 1989, 62 (01) :47-50
[9]   High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits [J].
Ding, Yunhong ;
Bacco, Davide ;
Dalgaard, Kjeld ;
Cai, Xinlun ;
Zhou, Xiaoqi ;
Rottwitt, Karsten ;
Oxenlowe, Leif Katsuo .
NPJ QUANTUM INFORMATION, 2017, 3
[10]   Characterization of space-momentum entangled photons with a time resolving CMOS SPAD array [J].
Eckmann, Bruno ;
Bessire, Baenz ;
Unternaehrer, Manuel ;
Gasparini, Leonardo ;
Perenzoni, Matteo ;
Stefanov, Andre .
OPTICS EXPRESS, 2020, 28 (21) :31553-31571