Web-Based Survival Analysis Tool Tailored for Medical Research (KMplot): Development and Implementation
被引:1140
作者:
Lanczky, Andras
论文数: 0引用数: 0
h-index: 0
机构:
Semmelweis Univ, Dept Bioinformat, Tuzolto Utca 7-9, H-1094 Budapest, Hungary
Res Ctr Nat Sci, Inst Enzymol, TTK Lendulet Canc Biomarker Res Grp, Budapest, HungarySemmelweis Univ, Dept Bioinformat, Tuzolto Utca 7-9, H-1094 Budapest, Hungary
Lanczky, Andras
[1
,2
]
Gyorffy, Balazs
论文数: 0引用数: 0
h-index: 0
机构:
Semmelweis Univ, Dept Bioinformat, Tuzolto Utca 7-9, H-1094 Budapest, Hungary
Res Ctr Nat Sci, Inst Enzymol, TTK Lendulet Canc Biomarker Res Grp, Budapest, HungarySemmelweis Univ, Dept Bioinformat, Tuzolto Utca 7-9, H-1094 Budapest, Hungary
Gyorffy, Balazs
[1
,2
]
机构:
[1] Semmelweis Univ, Dept Bioinformat, Tuzolto Utca 7-9, H-1094 Budapest, Hungary
[2] Res Ctr Nat Sci, Inst Enzymol, TTK Lendulet Canc Biomarker Res Grp, Budapest, Hungary
Background: Survival analysis is a cornerstone of medical research, enabling the assessment of clinical outcomes for disease progression and treatment efficiency. Despite its central importance, no commonly used spreadsheet software can handle survival analysis and there is no web server available for its computation. Objective: Here, we introduce a web-based tool capable of performing univariate and multivariate Cox proportional hazards survival analysis using data generated by genomic, transcriptomic, proteomic, or metabolomic studies. Methods: We implemented different methods to establish cut-off values for the trichotomization or dichotomization of continuous data. The false discovery rate is computed to correct for multiple hypothesis testing. A multivariate analysis option enables comparing omics data with clinical variables. Results: We established a registration-free web-based survival analysis tool capable of performing univariate and multivariate survival analysis using any custom-generated data. Conclusions: This tool fills a gap and will be an invaluable contribution to basic medical and clinical research.