An explicit representation of Verblunsky coefficients

被引:10
作者
Bingham, N. H. [2 ]
Inoue, Akihiko [1 ]
Kasahara, Yukio [3 ]
机构
[1] Hiroshima Univ, Dept Math, Higashihiroshima 7398526, Japan
[2] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
[3] Hokkaido Univ, Dept Math, Sapporo, Hokkaido 0600810, Japan
关键词
Verblunsky coefficients; Partial autocorrelation functions; Phase functions; FARIMA processes; Long memory; PARTIAL AUTOCORRELATION FUNCTIONS; POSITIVE HARMONIC-FUNCTIONS;
D O I
10.1016/j.spl.2011.11.004
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove a representation of the partial autocorrelation function (PACF) of a stationary process, or of the Verblunsky coefficients of its normalized spectral measure, in terms of the Fourier coefficients of the phase function. It is not of fractional form, whence simpler than the existing one obtained by the second author. We apply it to show a general estimate on the Verblunsky coefficients for short-memory processes as well as the precise asymptotic behavior, with remainder term, of those for FARIMA processes. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:403 / 410
页数:8
相关论文
共 26 条
[1]  
[Anonymous], 1967, Orthogonal Polynomials
[2]  
[Anonymous], 1960, ECONOMETRICA
[3]  
Barndorff-Nielsen O., 1973, Journal of Multivariate Analysis, V3, P408, DOI DOI 10.1016/0047-259X(73)90030-4
[4]  
Bingham N.H, 2011, SZEGOS THEOREM ITS P
[5]  
Bingham N.H., 1989, REGULAR VARIATION
[6]  
Brockwell P. J., 1991, TIME SERIES THEORY M
[7]  
Dym H., 1976, GAUSSIAN PROCESSES F
[8]  
Granger C. W. J., 1980, Journal of Time Series Analysis, V1, P15, DOI 10.1111/j.1467-9892.1980.tb00297.x
[9]  
Grenander U, 1958, California Monographs in Mathematical Sciences
[10]  
HOSKING JRM, 1981, BIOMETRIKA, V68, P165, DOI 10.1093/biomet/68.1.165