Experimental study on heat dissipation for lithium-ion battery based on micro heat pipe array (MHPA)

被引:98
|
作者
Ye, Xin [1 ]
Zhao, Yaohua [1 ]
Quan, Zhenhua [1 ]
机构
[1] Beijing Univ Technol, Coll Architecture & Civil Engn, Dept Bldg Environm & Facil Engn, 100 Pingleyuan, Beijing 100124, Peoples R China
关键词
MHPA Li-ion battery pack; Heat dissipation; Optimum operating temperature; Temperature uniformity; THERMAL MANAGEMENT; UNIFORMITY; PACKS;
D O I
10.1016/j.applthermaleng.2017.10.141
中图分类号
O414.1 [热力学];
学科分类号
摘要
Safe containment and management of appreciable heat effects associated with lithium-ion (Li-ion) batteries in high-power applications remain a challenge before widespread commercialization can occur. In this study, experiments utilizing Li-ion battery packs were conducted under sealed conditions with constant current of 18 A. Temperatures were measured with and without micro heat pipe arrays (MHPAs) during the charge-discharge cycle. The temperature results of the Li-ion battery packs validated the effectiveness of the cooling system based on MHPAs in lowering the temperature increase rate of battery packs at 1C rate and minimizing the temperature difference inside battery packs and cells during operation. Based on the experimental data, the heat generation and dissipation of Li-ion battery pack are analyzed. The results of experiments and calculation revealed enhanced stability and safety of battery during the continuous charge-discharge cycle. This novel MHPA based on a cooling system possessed the characteristics of high energy efficiency, an easy-to-manufacture process and compactness. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:74 / 82
页数:9
相关论文
共 50 条
  • [1] Investigation of thermal management of lithium-ion battery based on micro heat pipe array
    Wang, Lincheng
    Zhao, Yaohua
    Quan, Zhenhua
    Liang, Jianan
    JOURNAL OF ENERGY STORAGE, 2021, 39
  • [2] Experimental investigation on lithium-ion battery heat dissipation performance of oscillating heat pipe with micro-nano emulsion
    Gao T.
    Jiang Z.
    Wu X.
    Hao T.
    Ma X.
    Wen R.
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2023, 42 (03): : 1167 - 1177
  • [3] Thermal management system of lithium-ion battery module based on micro heat pipe array
    Ye, Xin
    Zhao, Yaohua
    Quan, Zhenhua
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2018, 42 (02) : 648 - 655
  • [4] Study the heat dissipation performance of lithium-ion battery liquid cooling system based on flat heat pipe
    Hu, Hao
    Xu, Xiaoming
    Li, Renzheng
    Yuan, Qiuqi
    Fu, Jiaqi
    FIRE AND MATERIALS, 2022, 46 (01) : 168 - 180
  • [5] Experimental study on preheating thermal management system for lithium-ion battery based on U-shaped micro heat pipe array
    Ren, Ruyang
    Zhao, Yaohua
    Diao, Yanhua
    Liang, Lin
    ENERGY, 2022, 253
  • [6] Heat Dissipation Analysis on the Liquid Cooling System Coupled with a Flat Heat Pipe of a Lithium-Ion Battery
    Mei, Nan
    Xu, Xiaoming
    Li, Renzheng
    ACS OMEGA, 2020, 5 (28): : 17431 - 17441
  • [7] Experimental investigation of preheating performance of lithium-ion battery modules in electric vehicles enhanced by bending flat micro heat pipe array
    Liang, Lin
    Zhao, Yaohua
    Diao, Yanhua
    Ren, Ruyang
    Zhu, Tingting
    Li, Yan
    APPLIED ENERGY, 2023, 337
  • [8] Experimental study of the thermal characteristics of a heat storage wall with micro-heat pipe array (MHPA) and PCM in solar greenhouse
    Guan, Yong
    Meng, Qi
    Ji, Tianxu
    Hu, Wanling
    Li, Wenlong
    Liu, Tianming
    ENERGY, 2023, 264
  • [9] Heat dissipation optimization of lithium-ion battery pack based on neural networks
    Qian, Xiao
    Xuan, Dongji
    Zhao, Xiaobo
    Shi, Zhuangfei
    APPLIED THERMAL ENGINEERING, 2019, 162
  • [10] Study on the thermal interaction and heat dissipation of cylindrical Lithium-Ion Battery cells
    Huang, Yuqi
    Lu, Yiji
    Huang, Rui
    Chen, Junxuan
    Chen, Fenfang
    Liu, Zhentao
    Yu, Xiaoli
    Roskilly, Anthony Paul
    PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON APPLIED ENERGY, 2017, 142 : 4029 - 4036