Regional Stabilization of Input-Delayed Uncertain Nonlinear Polynomial Systems

被引:12
作者
Coutinho, Daniel [1 ]
de Souza, Carlos E. [2 ]
Gomes da Silva, Joao Manoel, Jr. [3 ]
Caldeira, Andre F. [4 ,5 ]
Prieur, Christophe [6 ]
机构
[1] Univ Fed Santa Catarina, Dept Automat & Syst, Florianopolis 88040900, SC, Brazil
[2] Lab Nacl Comp Cient LNCC MCTIC, Dept Math & Computat Methods, Petropolis 25651075, RJ, Brazil
[3] Univ Fed Rio Grande do Sul, Dept Automat & Energy Syst, Porto Alegre, RS, Brazil
[4] GIPSA Lab, Grenoble 38000, France
[5] Univ Fed Santa Catarina, Grad Program Engn Automat & Syst, Florianopolis 88040900, SC, Brazil
[6] Univ Grenoble Alpes, CNRS, Grenoble INP, GIPSA Lab, Grenoble 38031, France
关键词
Delays; Asymptotic stability; Nonlinear systems; Time-varying systems; State feedback; Stability analysis; Nonlinear polynomial systems; region of attraction estimation; regional stabilization; time-varying input delay; LYAPUNOV-KRASOVSKII FUNCTIONALS; STABILITY; CONTROLLER; FEEDBACK;
D O I
10.1109/TAC.2019.2931952
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper addresses the problem of local stabilization of nonlinear polynomial control systems subject to time-varying input delay and polytopic parameter uncertainty. A linear matrix inequality approach based on the Lyapunov-Krasovskii theory is proposed for designing a nonlinear polynomial state feedback controller ensuring the robust local uniform asymptotic stability of the system origin along with an estimate of its region of attraction. Two convex optimization procedures are presented to compute a stabilizing controller ensuring either a maximized set of admissible initial states for given upper bounds on the delay and its variation rate or a maximized lower bound on the maximum admissible input delay considering a given set of admissible initial states. Numerical examples demonstrate the potentials of the proposed stabilization approach.
引用
收藏
页码:2300 / 2307
页数:8
相关论文
共 31 条
[1]   Nonlinear control of a heating, ventilating, and air conditioning system with thermal load estimation [J].
Argüello-Serrano, B ;
Vélez-Reyes, M .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 1999, 7 (01) :56-63
[2]   LINEAR-SYSTEMS WITH DELAYED CONTROLS - A REDUCTION [J].
ARTSTEIN, Z .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1982, 27 (04) :869-879
[3]  
Boy S., 1994, LINEAR MATRIX INEQUA
[4]   Computing output feedback controllers to enlarge the domain of attraction in polynomial systems [J].
Chesi, G .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2004, 49 (10) :1846-1850
[5]   Asymptotic stabilization of an input-delayed chain of integrators with nonlinearity [J].
Choi, Ho-Lim ;
Lim, Jong-Tae .
SYSTEMS & CONTROL LETTERS, 2010, 59 (06) :374-379
[6]   Nonlinear State Feedback Design With a Guaranteed Stability Domain for Locally Stabilizable Unstable Quadratic Systems [J].
Coutinho, Daniel ;
de Souza, Carlos E. .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2012, 59 (02) :360-370
[7]   Delay-dependent robust stability and L2-gain analysis of a class of nonlinear time-delay systems [J].
Coutinho, Daniel F. ;
de Souza, Carlos E. .
AUTOMATICA, 2008, 44 (08) :2006-2018
[8]   Stability Analysis of Implicit Polynomial Systems [J].
Coutinho, Daniel F. ;
de Souza, Carlos E. ;
Trofino, Alexandre .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (05) :1012-1018
[9]   Extended H2 and H∞ norm characterizations and controller parametrizations for discrete-time systems [J].
De Oliveira, MC ;
Geromel, JC ;
Bernussou, J .
INTERNATIONAL JOURNAL OF CONTROL, 2002, 75 (09) :666-679
[10]   Control of rational systems using linear-fractional representations and linear matrix inequalities [J].
ElGhaoui, L ;
Scorletti, G .
AUTOMATICA, 1996, 32 (09) :1273-1284