Detection and classification of white blood cells with an improved deep learning-based approach

被引:9
|
作者
Akalin, Fatma [1 ]
Yumusak, Nejat [2 ]
机构
[1] Sakarya Univ, Fac Comp & Informat Sci, Dept Informat Syst Engn, Sakarya, Turkey
[2] Sakarya Univ, Fac Comp & Informat Sci, Dept Comp Engn, Sakarya, Turkey
关键词
Classification of white blood cells; peripheral blood smear; object detection; YOLOv5; Detectron2;
D O I
10.55730/1300-0632.3965
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The analysis of white blood cells, which defend the body against deadly infections and disease-causing substances, is an important issue in the medical world. The concentrations of these cells in the blood, examined in 5 classes, i.e. monocytes, eosinophils, basophils, lymphocytes, and neutrophils, vary according to the types of diseases in the body. The peripheral blood smear is widely used to analyze blood cells. Manual evaluation of this method is laborious and time-consuming. At the same time, many environmental and humanistic parameters affect the method's performance. Therefore, in the presented study, a real-time detection process is realized. Firstly, YOLOv5s, YOLOv5x, and Detectron 2 R50-FPN pretrained models in the object recognition framework are used. Next, two original contributions are made to the study to improve the model's performance. The first contribution includes optimizing the activation function, an essential criterion in training the model, and an arrangement provided in the architecture. With this proposed approach, an improvement of 0.006 is achieved in the recognition rates of all classes. The second contribution is the combined use of the YOLO and Detectron2 frameworks, which have two different object evaluation processes. The success rate achieved with this hybrid structure provided an improvement between 3.44% and 14.7% compared to the outputs obtained from the YOLO and Detectron2 pretrained models. In addition, the maximum accuracy rate of this hybrid structure on the test dataset for detection and classification of white blood cells is obtained as 98%.
引用
收藏
页码:2725 / 2739
页数:16
相关论文
共 50 条
  • [1] Integrating explainability into deep learning-based models for white blood cells classification
    Bhatia, Kunal
    Dhalla, Sabrina
    Mittal, Ajay
    Gupta, Savita
    Gupta, Aastha
    Jindal, Alka
    COMPUTERS & ELECTRICAL ENGINEERING, 2023, 110
  • [2] Detection and Classification of White Blood Cells Through Deep Learning Techniques
    Abou El-Seoud, Samir
    Siala, Muaad Hammuda
    McKee, Gerard
    INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING, 2020, 16 (15) : 94 - 105
  • [3] Improved White Blood Cells Classification Based on Pre-trained Deep Learning Models
    Mohamed, Ensaf H.
    El-Behaidy, Wessam H.
    Khoriba, Ghada
    Li, Jie
    JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, 2020, 16 (01) : 37 - 45
  • [4] AUTOMATIC DETECTION AND CLASSIFICATION OF WHITE BLOOD CELLS BY IMPROVED FUZZY CLUSTERING ALGORITHM AND DEEP LEARNING METHOD
    Li, Limin
    Wang, Mengfei
    Wang, Weixing
    JOURNAL OF INVESTIGATIVE MEDICINE, 2023, 71 : 32 - 32
  • [5] An improved deep learning based classification of human white blood cell images
    Siddique, Md Abu Ismail
    Bin Aziz, Abu Zahid
    Matin, Abdul
    PROCEEDINGS OF 2020 11TH INTERNATIONAL CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (ICECE), 2020, : 149 - 152
  • [6] White Blood Cells Image Classification Based on Radiomics and Deep Learning
    Wu, Wenna
    Liao, Shengwu
    Lu, Zhentai
    IEEE ACCESS, 2022, 10 : 124036 - 124052
  • [7] A Deep Learning-based Approach for WBC Classification
    Ramyashree, K. S.
    Sharada, B.
    Bhairava, R.
    2024 5TH INTERNATIONAL CONFERENCE ON INNOVATIVE TRENDS IN INFORMATION TECHNOLOGY, ICITIIT 2024, 2024,
  • [8] A Deep Learning-Based Approach for Inappropriate Content Detection and Classification of YouTube Videos
    Yousaf, Kanwal
    Nawaz, Tabassam
    IEEE ACCESS, 2022, 10 : 16283 - 16298
  • [9] Fabric defect detection and classification via deep learning-based improved Mask RCNN
    Revathy, G.
    Kalaivani, R.
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (03) : 2183 - 2193
  • [10] Fabric defect detection and classification via deep learning-based improved Mask RCNN
    G. Revathy
    R. Kalaivani
    Signal, Image and Video Processing, 2024, 18 : 2183 - 2193