Effects of LiBF4 Addition on the Lithium-Ion Conductivity of LiBH4

被引:8
作者
de Kort, Laura M. [1 ]
Gulino, Valerio [1 ]
Blanchard, Didier [2 ]
Ngene, Peter [1 ]
机构
[1] Univ Utrecht, Debye Inst Nanomat Sci, Dept Chem, Mat Chem & Catalysis, Univ Weg 99, NL-3584 CS Utrecht, Netherlands
[2] European Synchrotron Facil ESRF, 71 Ave Martyrs, F-38000 Grenoble, France
基金
荷兰研究理事会;
关键词
solid-state electrolytes; complex hydrides; lithium borohydride; ionic conductivity; ion substitution; interface effects; LI; PHASE; CONDUCTORS; ELECTROLYTES; SUBSTITUTION; STABILITY; CHEMISTRY; BATTERIES; SPECTRA; BORANES;
D O I
10.3390/molecules27072187
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Complex hydrides, such as LiBH4, are a promising class of ion conductors for all-solid-state batteries, but their application is constrained by low ion mobility at room temperature. Mixing with halides or complex hydride anions, i.e., other complex hydrides, is an effective approach to improving the ionic conductivity. In the present study, we report on the reaction of LiBH4 with LiBF4, resulting in the formation of conductive composites consisting of LiBH4, LiF and lithium closo-borates. It is believed that the in-situ formation of closo-borate related species gives rise to highly conductive interfaces in the decomposed LiBH4 matrix. As a result, the ionic conductivity is improved by orders of magnitude with respect to the Li-ion conductivity of the LiBH4, up to 0.9 x 10(-5) S cm(-1) at 30 degrees C. The insights gained in this work show that the incorporation of a second compound is a versatile method to improve the ionic conductivity of complex metal hydrides, opening novel synthesis pathways not limited to conventional substituents.
引用
收藏
页数:12
相关论文
共 63 条
[1]   4 V room-temperature all-solid-state sodium battery enabled by a passivating cathode/hydroborate solid electrolyte interface [J].
Asakura, Ryo ;
Reber, David ;
Duchene, Leo ;
Payandeh, Seyedhosein ;
Remhof, Arndt ;
Hagemann, Hans ;
Battaglia, Corsin .
ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (12) :5048-5058
[2]   Electrochemical Oxidative Stability of Hydroborate-Based Solid State Electrolytes [J].
Asakura, Ryo ;
Duchene, Leo ;
Kuehnel, Ruben-Simon ;
Remhof, Arndt ;
Hagemann, Hans ;
Battaglia, Corsin .
ACS APPLIED ENERGY MATERIALS, 2019, 2 (09) :6924-6930
[3]   Dispersed Solid Conductors: Fast Interfacial Li-Ion Dynamics in Nanostructured LiF and LiF:γ-Al2O3 Composites [J].
Breuer, S. ;
Pregartner, V. ;
Lunghammer, S. ;
Wilkening, H. M. R. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (09) :5222-5230
[4]   Closo-Hydroborate Sodium Salts as an Emerging Class of Room-Temperature Solid Electrolytes [J].
Brighi, Matteo ;
Murgia, Fabrizio ;
Cerny, Radovan .
CELL REPORTS PHYSICAL SCIENCE, 2020, 1 (10)
[5]   A computational study on the effect of fluorine substitution in LiBH4 [J].
Corno, Marta ;
Pinatel, Eugenio ;
Ugliengo, Piero ;
Baricco, Marcello .
JOURNAL OF ALLOYS AND COMPOUNDS, 2011, 509 :S679-S683
[6]   FT-IR spectra of inorganic borohydrides [J].
D'Anna, Vincenza ;
Spyratou, Alexandra ;
Sharma, Manish ;
Hagemann, Hans .
SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2014, 128 :902-906
[7]   Ionic conductivity in complex metal hydride-based nanocomposite materials: The impact of nanostructuring and nanocomposite formation [J].
de Kort, Laura M. ;
Gulino, Valerio ;
de Jongh, Petra E. ;
Ngene, Peter .
JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 901
[8]   The effect of nanoscaffold porosity and surface chemistry on the Li-ion conductivity of LiBH4-LiNH2/metal oxide nanocomposites [J].
de Kort, Laura M. ;
Harmel, Justine ;
de Jongh, Petra E. ;
Ngene, Peter .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (39) :20687-20697
[9]   STUDIES OF BORANES .30. REACTION OF PENTABORANE(9) WITH DIBORANE(6) ISOLATION OF SEVERAL NEW BORON HYDRIDES [J].
DOBSON, J ;
MARUCA, R ;
SCHAEFFE.R .
INORGANIC CHEMISTRY, 1970, 9 (09) :2161-&
[10]   A highly stable sodium solid-state electrolyte based on a dodeca/deca-borate equimolar mixture [J].
Duchene, L. ;
Kuhnel, R. -S. ;
Rentsch, D. ;
Remhof, A. ;
Hagemann, H. ;
Battaglia, C. .
CHEMICAL COMMUNICATIONS, 2017, 53 (30) :4195-4198