Photoelectrochemistry of oxygen in rechargeable Li-O2 batteries

被引:101
|
作者
Du, Dongfeng [1 ]
Zhu, Zhuo [1 ]
Chan, Kwong-Yu [2 ]
Li, Fujun [1 ,3 ]
Chen, Jun [1 ,3 ]
机构
[1] Nankai Univ, Coll Chem, Renewable Energy Convers & Storage Ctr RECAST, Key Lab Adv Energy Mat Chem,Minist Educ, Tianjin 300071, Peoples R China
[2] Univ Hong Kong, Dept Chem, Pokfulam Rd, Hong Kong, Peoples R China
[3] Haihe Lab Sustainable Chem Transformat, Tianjin 300192, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
AIR; REDUCTION; OXIDATION; VOLTAGE; OXIDE;
D O I
10.1039/d1cs00877c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Rechargeable lithium-oxygen (Li-O-2) batteries are promising energy storage devices due to their high theoretical energy density. However, the sluggish kinetics of the oxygen reduction and evolution reactions (ORR/OER) at the cathodes results in large polarization and low energy efficiency. Although advances have been achieved in electrode material designs and battery configurations, large discharge/charge voltage gaps remain. The introduction of light into Li-O-2 batteries has been demonstrated to boost the reaction kinetics of the ORR/OER, leading to enhanced electrochemical performances, but the understanding of the photoelectrochemical process at oxygen cathodes is limited. This tutorial review focuses on the recent findings regarding photoinvolved oxygen cathodes, battery configurations, and the stability of Li-O-2 batteries, aiming to provide a fundamental understanding of photoinvolved Li-O-2 batteries. The challenges and perspectives are discussed in light of the interdisciplinary nature of photochemistry, materials chemistry, electrochemistry, computation, spectroscopy, and surface science.
引用
收藏
页码:1846 / 1860
页数:16
相关论文
共 50 条
  • [1] Reaction chemistry in rechargeable Li-O2 batteries
    Lim, Hee-Dae
    Lee, Byungju
    Bae, Youngjoon
    Park, Hyeokjun
    Ko, Youngmin
    Kim, Haegyeom
    Kim, Jinsoo
    Kang, Kisuk
    CHEMICAL SOCIETY REVIEWS, 2017, 46 (10) : 2873 - 2888
  • [2] TEMPO: A Mobile Catalyst for Rechargeable Li-O2 Batteries
    Bergner, Benjamin J.
    Schuermann, Adrian
    Peppler, Klaus
    Garsuch, Arnd
    Janek, Juergen
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (42) : 15054 - 15064
  • [3] On the Stability of Nitrate Ion in Rechargeable Li-O2 Batteries
    Rosy
    Noked, Malachi
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 166 (03) : A5008 - A5013
  • [4] The discharge rate capability of rechargeable Li-O2 batteries
    Lu, Yi-Chun
    Kwabi, David G.
    Yao, Koffi P. C.
    Harding, Jonathon R.
    Zhou, Jigang
    Zuin, Lucia
    Shao-Horn, Yang
    ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (08) : 2999 - 3007
  • [5] Critical Challenges in Rechargeable Aprotic Li-O2 Batteries
    Feng, Ningning
    He, Ping
    Zhou, Haoshen
    ADVANCED ENERGY MATERIALS, 2016, 6 (09)
  • [6] Insights into the role of oxygen functional groups and defects in the rechargeable nonaqueous Li-O2 batteries
    Qian, Zhengyi
    Sun, Baoyu
    Du, Lei
    Lou, Shuaifeng
    Du, Chunyu
    Zuo, Pengjian
    Ma, Yulin
    Cheng, Xinqun
    Gao, YunZhi
    Yin, Geping
    ELECTROCHIMICA ACTA, 2018, 292 : 838 - 845
  • [7] Carbon microspheres air electrode for rechargeable Li-O2 batteries
    Meng, Wei
    Liu, Shengwei
    Wen, Lina
    Qin, Xue
    RSC ADVANCES, 2015, 5 (64): : 52206 - 52209
  • [8] MoP Nanoflakes as Efficient Electrocatalysts for Rechargeable Li-O2 Batteries
    Wei, Minghui
    Luo, Yong
    Jin, Chao
    Sui, Jing
    Wang, Zhangjun
    Li, Cong
    Yang, Ruizhi
    ACS APPLIED ENERGY MATERIALS, 2018, 1 (02): : 331 - 335
  • [9] Recent progresses, challenges and perspectives on rechargeable Li-O2 batteries
    Yu, Haohan
    Liu, Dapeng
    Feng, Xilan
    Zhang, Yu
    NANO SELECT, 2020, 1 (01): : 79 - 93
  • [10] Review-Oxygen Electrocatalysts based on Various Modulation Strategies for Rechargeable Li-O2 Batteries
    Guo, Shiquan
    Sun, Yaxin
    Wang, Jiaona
    Peng, Lichong
    Li, Congju
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169 (03)