Gravitational wave background from binary systems

被引:147
作者
Rosado, Pablo A. [1 ]
机构
[1] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany
来源
PHYSICAL REVIEW D | 2011年 / 84卷 / 08期
关键词
INTERFEROMETER-SPACE-ANTENNA; SUPERMASSIVE BLACK-HOLES; NEUTRON-STAR FORMATION; LASER-INTERFEROMETER; COSMOLOGICAL POPULATION; COALESCENCE RATE; MASS; EVOLUTION; HISTORY; TEMPERATURE;
D O I
10.1103/PhysRevD.84.084004
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Basic aspects of the background of gravitational waves and its mathematical characterization are reviewed. The spectral energy density parameter Omega(f), commonly used as a quantifier of the background, is derived for an ensemble of many identical sources emitting at different times and locations. For such an ensemble, Omega(f) is generalized to account for the duration of the signals and of the observation, so that one can distinguish the resolvable and unresolvable parts of the background. The unresolvable part, often called confusion noise or stochastic background, is made by signals that cannot be either individually identified or subtracted out of the data. To account for the resolvability of the background, the overlap function is introduced. This function is a generalization of the duty cycle, which has been commonly used in the literature, in some cases leading to incorrect results. The spectra produced by binary systems (stellar binaries and massive black hole binaries) are presented over the frequencies of all existing and planned detectors. A semi-analytical formula for Omega(f) is derived in the case of stellar binaries (containing white dwarfs, neutron stars or stellar-mass black holes). Besides a realistic expectation of the level of background, upper and lower limits are given, to account for the uncertainties in some astrophysical parameters such as binary coalescence rates. One interesting result concerns all current and planned ground-based detectors (including the Einstein Telescope). In their frequency range, the background of binaries is resolvable and only sporadically present. In other words, there is no stochastic background of binaries for ground-based detectors.
引用
收藏
页数:29
相关论文
共 97 条
[1]   LIGO: the Laser Interferometer Gravitational-Wave Observatory [J].
Abbott, B. P. ;
Abbott, R. ;
Adhikari, R. ;
Ajith, P. ;
Allen, B. ;
Allen, G. ;
Amin, R. S. ;
Anderson, S. B. ;
Anderson, W. G. ;
Arain, M. A. ;
Araya, M. ;
Armandula, H. ;
Armor, P. ;
Aso, Y. ;
Aston, S. ;
Aufmuth, P. ;
Aulbert, C. ;
Babak, S. ;
Baker, P. ;
Ballmer, S. ;
Barker, C. ;
Barker, D. ;
Barr, B. ;
Barriga, P. ;
Barsotti, L. ;
Barton, M. A. ;
Bartos, I. ;
Bassiri, R. ;
Bastarrika, M. ;
Behnke, B. ;
Benacquista, M. ;
Betzwieser, J. ;
Beyersdorf, P. T. ;
Bilenko, I. A. ;
Billingsley, G. ;
Biswas, R. ;
Black, E. ;
Blackburn, J. K. ;
Blackburn, L. ;
Blair, D. ;
Bland, B. ;
Bodiya, T. P. ;
Bogue, L. ;
Bork, R. ;
Boschi, V. ;
Bose, S. ;
Brady, P. R. ;
Braginsky, V. B. ;
Brau, J. E. ;
Bridges, D. O. .
REPORTS ON PROGRESS IN PHYSICS, 2009, 72 (07)
[2]   STOCHASTIC GRAVITY-WAVE BACKGROUND IN INFLATIONARY-UNIVERSE MODELS [J].
ALLEN, B .
PHYSICAL REVIEW D, 1988, 37 (08) :2078-2085
[3]   Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities [J].
Allen, B ;
Romano, JD .
PHYSICAL REVIEW D, 1999, 59 (10)
[4]  
Allen B., ARXIVGRQC9604033V3
[5]   Stable operation of a 300-m laser interferometer with sufficient sensitivity to detect gravitational-wave events within our galaxy [J].
Ando, M ;
Arai, K ;
Takahashi, R ;
Heinzel, G ;
Kawamura, S ;
Tatsumi, D ;
Kanda, N ;
Tagoshi, H ;
Araya, A ;
Asada, H ;
Aso, Y ;
Barton, MA ;
Fujimoto, MK ;
Fukushima, M ;
Futamase, T ;
Hayama, K ;
Horikoshi, G ;
Ishizuka, H ;
Kamikubota, N ;
Kawabe, K ;
Kawashima, N ;
Kobayashi, Y ;
Kojima, Y ;
Kondo, K ;
Kozai, Y ;
Kuroda, K ;
Matsuda, N ;
Mio, N ;
Miura, K ;
Miyakawa, O ;
Miyama, SM ;
Miyoki, S ;
Moriwaki, S ;
Musha, M ;
Nagano, S ;
Nakagawa, K ;
Nakamura, T ;
Nakao, K ;
Numata, K ;
Ogawa, Y ;
Ohashi, M ;
Ohishi, N ;
Okutomi, S ;
Oohara, K ;
Otsuka, S ;
Saito, Y ;
Sasaki, M ;
Sato, S ;
Sekiya, A ;
Shibata, M .
PHYSICAL REVIEW LETTERS, 2001, 86 (18) :3950-3954
[6]  
[Anonymous], 2010, CLASSICAL QUANT GRAV
[7]  
[Anonymous], 1973, Gravitation
[8]   Massive black-hole binary inspirals: results from the LISA parameter estimation taskforce [J].
Arun, K. G. ;
Babak, Stas ;
Berti, Emanuele ;
Cornish, Neil ;
Cutler, Curt ;
Gair, Jonathan ;
Hughes, Scott A. ;
Iyer, Bala R. ;
Lang, Ryan N. ;
Mandel, Ilya ;
Porter, Edward K. ;
Sathyaprakash, Bangalore S. ;
Sinha, Siddhartha ;
Sintes, Alicia M. ;
Trias, Miquel ;
Van Den Broeck, Chris ;
Volonteri, Marta .
CLASSICAL AND QUANTUM GRAVITY, 2009, 26 (09)
[9]   Confusion noise from LISA capture sources [J].
Barack, L ;
Cutler, C .
PHYSICAL REVIEW D, 2004, 70 (12) :21
[10]   THE EFFECT OF METALLICITY ON THE DETECTION PROSPECTS FOR GRAVITATIONAL WAVES [J].
Belczynski, Krzysztof ;
Dominik, Michal ;
Bulik, Tomasz ;
O'Shaughnessy, Richard ;
Fryer, Chris ;
Holz, Daniel E. .
ASTROPHYSICAL JOURNAL LETTERS, 2010, 715 (02) :L138-L141