Functional relations for the density-functional exchange and correlation functionals connecting functionals at three densities

被引:2
作者
Joubert, Daniel P. [1 ]
机构
[1] Univ Witwatersrand, Ctr Theoret Phys, Sch Phys, Johannesburg, South Africa
基金
新加坡国家研究基金会;
关键词
CORRELATION-ENERGY;
D O I
10.1103/PhysRevA.85.032511
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
It is shown that the density-functional-theory exchange and correlation functionals satisfy 0 = gamma E-hx [rho(N)] + 2E(c)(gamma)[rho(N)] - gamma Ehx[rho(gamma)(N-1)] - 2E(c)(gamma)[rho(gamma)(N-1)] + 2 integral d(3)r'[rho(0)(N-1)(r) - rho(gamma)(N-1)(r)] v(0)([rho(N)]; r) + integral d(3)r[rho(0)(N-1)(r) - rho(gamma)(N-1)(r)] r center dot del upsilon(0) )[rho(N)]; r) + integral d(3)r'rho(N)(r)r . del upsilon(gamma)(c)([rho(N)]; r) - integral d(3)r'[rho(0)(N-1)(r) . del upsilon(gamma)(c) ([rho(N)]; r) - integral d(3)r'f'gamma (r) r. del upsilon(gamma)(hxc)([rho(N)]; r) - 2 integral d(3)r'f'(gamma) upsilon(gamma)(hxc)([rho(N)]; r). In the derivation of this equation the adiabatic connection formulation is used, where the ground-state density of an N-electron system rho(N) is kept constant independent of the electron-electron coupling strength gamma. Here E-hx [rho] is the Hartree plus exchange energy, E-c(gamma)[rho] is the correlation energy, v. hxc [.] is the Hartree plus exchange-correlation potential, v(c)[rho] is the correlation potential, and v(hxc)(gamma)[rho] is the Kohn-Sham potential. The charge densities rho(N) and rho(gamma)(N-1) are the N- and (N - 1)-electron ground-state densities of the same Hamiltonian at electron-electron coupling strength gamma. f(gamma)(r) = rho(N)(r) - rho(N-1)gamma (r) rho(gamma)(N-1)(r) is the Fukui function. This equation can be useful in testing the internal self- consistency of approximations to the exchange and correlation functionals. As an example the identity is tested on the analytical Hooke's atom charge density for some frequently used approximate functionals.
引用
收藏
页数:5
相关论文
共 35 条
[1]   Functional designed to include surface effects in self-consistent density functional theory [J].
Armiento, R ;
Mattsson, AE .
PHYSICAL REVIEW B, 2005, 72 (08)
[2]   MOLECULAR HARDNESS AND SOFTNESS, LOCAL HARDNESS AND SOFTNESS, HARDNESS AND SOFTNESS KERNELS, AND RELATIONS AMONG THESE QUANTITIES [J].
BERKOWITZ, M ;
PARR, RG .
JOURNAL OF CHEMICAL PHYSICS, 1988, 88 (04) :2554-2557
[3]   Assessing the performance of recent density functionals for bulk solids [J].
Csonka, Gabor I. ;
Perdew, John P. ;
Ruzsinszky, Adrienn ;
Philipsen, Pier H. T. ;
Lebegue, Sebastien ;
Paier, Joachim ;
Vydrov, Oleg A. ;
Angyan, Janos G. .
PHYSICAL REVIEW B, 2009, 79 (15)
[4]  
Dreizler R., 1990, DENSITY FUNCTIONAL T
[5]   COMPARISON OF EXACT AND APPROXIMATE DENSITY FUNCTIONALS FOR AN EXACTLY SOLUBLE MODEL [J].
FILIPPI, C ;
UMRIGAR, CJ ;
TAUT, M .
JOURNAL OF CHEMICAL PHYSICS, 1994, 100 (02) :1290-1296
[6]   Further exploration of the Fukui function, hardness, and other reactivity indices and its relationships within the Kohn-Sham scheme [J].
Fuentealba, P. ;
Chamorro, E. ;
Cardenas, C. .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2007, 107 (01) :37-45
[7]   Conceptual density functional theory [J].
Geerlings, P ;
De Proft, F ;
Langenaeker, W .
CHEMICAL REVIEWS, 2003, 103 (05) :1793-1873
[8]   Study of the Discontinuity of the Exchange-Correlation Potential in an Exactly Soluble Case [J].
Gori-Giorgi, Paola ;
Savin, Andreas .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2009, 109 (11) :2410-2415
[9]  
GORLING A, 1995, INT J QUANTUM CHEM, P93
[10]   CORRELATION-ENERGY FUNCTIONAL AND ITS HIGH-DENSITY LIMIT OBTAINED FROM A COUPLING-CONSTANT PERTURBATION EXPANSION [J].
GORLING, A ;
LEVY, M .
PHYSICAL REVIEW B, 1993, 47 (20) :13105-13113