VISUAL OBJECT RECOGNITION USING DAISY DESCRIPTOR

被引:0
|
作者
Zhu, Chao [1 ]
Bichot, Charles-Edmond [1 ]
Chen, Liming [1 ]
机构
[1] Univ Lyon, CNRS, Ecole Cent Lyon, LIRIS,UMR5205, F-69134 Lyon, France
来源
2011 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME) | 2011年
关键词
Visual object recognition; local image descriptors; DAISY; SIFT; LOCAL FEATURES;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Visual content description is a key issue for the task of machine-based visual object categorization (VOC). A good visual descriptor should be both discriminative enough and computationally efficient while possessing some properties of robustness to viewpoint changes and lighting condition variations. The recent literature has featured local image descriptors, e. g. SIFT, as the main trend in VOC. However, it is well known that SIFT is computationally expensive, especially when the number of objects/concepts and learning data increase significantly. In this paper, we investigate the DAISY, which is a new fast local descriptor introduced for wide baseline matching problem, in the context of VOC. We carefully evaluate and compare the DAISY descriptor with SIFT both in terms of recognition accuracy and computation complexity on two standard image benchmarks - Caltech 101 and PASCAL VOC 2007. The experimental results show that DAISY outperforms the state-of-the-art SIFT while using shorter descriptor length and operating 3 times faster. When displaying a similar recognition accuracy to SIFT, DAISY can operate 12 times faster.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Face Recognition with DAISY Descriptors
    Velardo, Carmelo
    Dugelay, Jean-Luc
    MM&SEC 2010: 2010 ACM SIGMM MULTIMEDIA AND SECURITY WORKSHOP, PROCEEDINGS, 2010, : 95 - 100
  • [2] A SIFT-Color Moments Descriptor For Object Recognition
    Bo, Lu
    Whangbo, TaegKeun
    2014 INTERNATIONAL CONFERENCE ON IT CONVERGENCE AND SECURITY (ICITCS), 2014,
  • [3] Simultaneous Visual Object Recognition and Position Estimation Using SIFT
    Kouskouridas, Rigas
    Badekas, Efthimios
    Gasteratos, Antonios
    INTELLIGENT ROBOTICS AND APPLICATIONS, PROCEEDINGS, 2009, 5928 : 866 - 875
  • [4] Visual object recognition using probabilistic kernel subspace similarity
    Lee, JG
    Wang, JD
    Zhang, CS
    Bian, ZQ
    PATTERN RECOGNITION, 2005, 38 (07) : 997 - 1008
  • [5] Visual object recognition using multi-scale Local Binary Patterns and line segment feature
    Zhu, Chao
    Fu, Huanzhang
    Bichot, Charles-Edmond
    Dellandrea, Emmanuel
    Chen, Liming
    INTERNATIONAL JOURNAL OF SIGNAL AND IMAGING SYSTEMS ENGINEERING, 2012, 5 (02) : 85 - 92
  • [6] OBJECT RECOGNITION BASED ON BAG OF FEATURES AND A NEW LOCAL PATTERN DESCRIPTOR
    Ferraz, Carolina Toledo
    Pereira Junior, Osmando
    Rosa, Marcos Verdini
    Gonzaga, Adilson
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2014, 28 (08)
  • [7] Better Object Recognition using Bag of Visual Word Model with Compact Vocabulary
    Sachdeva, Varsha Devi
    Fida, Erum
    Baber, Junaid
    Bakhtyar, Maheen
    Dad, Imam
    Atif, Muhammad
    2017 13TH INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES (ICET 2017), 2017,
  • [8] Individual differences in involvement of the visual object recognition system during visual word recognition
    Laszlo, Sarah
    Sacchi, Elizabeth
    BRAIN AND LANGUAGE, 2015, 145 : 42 - 52
  • [9] Unsupervised Learning of Visual Object Recognition Models
    Navarrete, Dulce J.
    Morales, Eduardo F.
    Enrique Sucar, Luis
    ADVANCES IN ARTIFICIAL INTELLIGENCE - IBERAMIA 2012, 2012, 7637 : 511 - 520
  • [10] Category-specificity in visual object recognition
    Gerlach, Christian
    COGNITION, 2009, 111 (03) : 281 - 301