Insights into Li+, Na+, and K+ Intercalation in Lepidocrocite-Type Layered TiO2 Structures

被引:39
作者
Reeves, Kyle G. [1 ]
Ma, Jiwei [1 ]
Fukunishi, Mika [2 ]
Salanne, Mathieu [1 ,3 ]
Komaba, Shinichi [2 ]
Dambournet, Damien [1 ,3 ]
机构
[1] Sorbonne Univ, CNRS, PHENIX, Physicochim Electrolytes & Nanosyst Interfaciaux, F-75005 Paris, France
[2] Tokyo Univ Sci, Dept Appl Chem, Shinjuku Ku, 1-3 Kagurazaka, Tokyo 1628601, Japan
[3] FR CNRS 3459, Reseau Stockage Electrochim Energie RS2E, F-80039 Amiens, France
关键词
computational chemistry; materials science; water; electrode materials; titanates; lamellar structures; ion intercalation; SODIUM-ION; ANODE MATERIAL; CRYSTAL WATER; LITHIUM; ELECTRODES; TITANATE; CARBON; PERFORMANCE; TRANSITION; BATTERIES;
D O I
10.1021/acsaem.8b00170
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A lamellar lepidocrocite-type titanate structure with similar to 25% Ti4+ vacancies was recently synthesized, and it showed potential for use as an electrode in rechargeable lithium-ion batteries. In addition to lithium, we explore this material's ability to accommodate other monovalent ions with greater natural abundance (e.g., sodium and potassium) in order to develop lower-cost alternatives to lithium-ion batteries constructed from more widely available elements. Galvanostatic discharge/charge curves for the lepidocrocite material indicate that increasing the ionic radius of the monovalent ion results in a deteriorating performance of the electrode. Using first-principles electronic structure calculations, we identify the relaxed geometries of the structure while varying the placement of the ion in the structure. We then use these geometries to compute the energy of formations. Additionally, we determine that all ions are favorable in the structure, but interlayer positions are preferred compared to vacancy positions. We also conclude that the exchange between the interlayer and vacancy positions is a process that involves the interaction between interlayer water and surface hydroxyl groups next to the titanate layer. We observe a cooperative effect between structural water and OH groups to assist alkali ions to move from the interlayer to the vacancy site. Thus, the as-synthesized lepidocrocite serves as a prototypical structure to investigate the migration mechanism of ions within a confined space along with the interaction between water molecules and the titanate framework.
引用
收藏
页码:2078 / 2086
页数:17
相关论文
共 41 条
[21]   Lattice Water for the Enhanced Performance of Amorphous Iron Phosphate in Sodium-Ion Batteries [J].
Lim, Soo Yeon ;
Lee, Ji Hoon ;
Kim, Sangryun ;
Shin, Jaeho ;
Choi, Wonchang ;
Chung, Kyung Yoon ;
Jung, Dae Soo ;
Choi, Jang Wook .
ACS ENERGY LETTERS, 2017, 2 (05) :998-1004
[22]   Layered Lepidocrocite Type Structure Isolated by Revisiting the Sol-Gel Chemistry of Anatase TiO2: A New Anode Material for Batteries [J].
Ma, Jiwei ;
Reeves, Kyle G. ;
Gutierrez, Ana-Gabriela Porras ;
Body, Monique ;
Legein, Christophe ;
Kakinuma, Katsuyoshi ;
Borkiewicz, Olaf J. ;
Chapman, Karena W. ;
Groult, Henri ;
Salanne, Mathieu ;
Dambournet, Damien .
CHEMISTRY OF MATERIALS, 2017, 29 (19) :8313-8324
[23]   Experimental and Computational Investigation of Lepidocrocite Anodes for Sodium-Ion Batteries [J].
Markus, Isaac M. ;
Engelke, Simon ;
Shirpour, Mona ;
Asta, Mark ;
Doeff, Marca .
CHEMISTRY OF MATERIALS, 2016, 28 (12) :4284-4291
[24]   The High Performance of Crystal Water Containing Manganese Birnessite Cathodes for Magnesium Batteries [J].
Nam, Kwan Woo ;
Kim, Sangryun ;
Lee, Soyeon ;
Salama, Michael ;
Shterenberg, Ivgeni ;
Gofer, Yossi ;
Kim, Joo-Seong ;
Yang, Eunjeong ;
Park, Chan Sun ;
Kim, Ju-Sik ;
Lee, Seok-Soo ;
Chang, Won-Seok ;
Doo, Seok-Gwang ;
Jo, Yong Nam ;
Jung, Yousung ;
Aurbach, Doron ;
Choi, Jang Wook .
NANO LETTERS, 2015, 15 (06) :4071-4079
[25]   Critical Role of Crystal Water for a Layered Cathode Material in Sodium Ion Batteries [J].
Nam, Kwan Woo ;
Kim, Sangryun ;
Yang, Eunjeong ;
Jung, Yousung ;
Levi, Elena ;
Aurbach, Doron ;
Choi, Jang Wook .
CHEMISTRY OF MATERIALS, 2015, 27 (10) :3721-3725
[26]   Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials [J].
Ong, Shyue Ping ;
Chevrier, Vincent L. ;
Hautier, Geoffroy ;
Jain, Anubhav ;
Moore, Charles ;
Kim, Sangtae ;
Ma, Xiaohua ;
Ceder, Gerbrand .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (09) :3680-3688
[27]  
Perdew JP, 1997, PHYS REV LETT, V78, P1396, DOI 10.1103/PhysRevLett.77.3865
[28]   PREPARATION AND ACID-BASE PROPERTIES OF A PROTONATED TITANATE WITH THE LEPIDOCROCITE-LIKE LAYER STRUCTURE [J].
SASAKI, T ;
WATANABE, M ;
MICHIUE, Y ;
KOMATSU, Y ;
IZUMI, F ;
TAKENOUCHI, S .
CHEMISTRY OF MATERIALS, 1995, 7 (05) :1001-1007
[29]   Lepidocrocite-type Layered Titanate Structures: New Lithium and Sodium Ion Intercalation Anode Materials [J].
Shirpour, Mona ;
Cabana, Jordi ;
Doeff, Marca .
CHEMISTRY OF MATERIALS, 2014, 26 (08) :2502-2512
[30]   Activated carbon from the graphite with increased rate capability for the potassium ion battery [J].
Tai, Zhixin ;
Zhang, Qing ;
Liu, Yajie ;
Liu, Huakun ;
Dou, Shixue .
CARBON, 2017, 123 :54-61