Some new type optical and the other soliton solutions of coupled nonlinear Hirota equation

被引:15
作者
Nisar, Kottakkaran Sooppy [1 ]
Inan, Ibrahim E. [2 ]
Yepez-Martinez, H. [3 ]
Inc, Mustafa [4 ,5 ,6 ]
机构
[1] Prince Sattam Bin Abdulaziz Univ, Coll Arts & Sci, Dept Math, Wadi Aldawaser 11991, Saudi Arabia
[2] Firat Univ, Fac Educ, TR-23119 Elazig, Turkey
[3] Univ Autonoma Ciudad Mexico, Prolongac San Isidro 151, Mexico City 09790, DF, Mexico
[4] Biruni Univ, Dept Comp Engn, Istanbul, Turkey
[5] Firat Univ, Dept Math, TR-23119 Elazig, Turkey
[6] China Med Univ, Dept Med Res, Taichung, Taiwan
关键词
Coupled nonlinear Hirota equation; Generalized -expansion method; Optical solitons; TRAVELING-WAVE SOLUTIONS; ELLIPTIC FUNCTION EXPANSION; TANH-FUNCTION METHOD; KERR LAW NONLINEARITY; (G'/G)-EXPANSION METHOD; SCHRODINGERS EQUATION; EVOLUTION-EQUATIONS; PERIODIC-SOLUTIONS; TRANSFORMATION; CONSTRUCT;
D O I
10.1016/j.rinp.2022.105388
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this study, we obtained some exact traveling wave solutions of coupled nonlinear Hirota equation (CNHE) by using generalized (G'/G)-expansion method. The solutions we obtained are hyperbolic, trigonometric and expo-nential solutions. Analytical results for the obtained solutions for the CNHE have been corroborated through the Mathematica 11.2 symbolic calculation. Solutions have been illustrated in 3D graphs, and 2D plots. The present method has been used to obtain exact traveling wave solutions for several nonlinear partial differential equations.
引用
收藏
页数:17
相关论文
共 52 条
[1]   On solitary wave solutions for the two-dimensional nonlinear modified Kortweg-de Vries-Burger equation [J].
Abourabia, AM ;
El Horbaty, MM .
CHAOS SOLITONS & FRACTALS, 2006, 29 (02) :354-364
[2]   2-PARAMETER MIURA TRANSFORMATION OF THE BENJAMIN-ONO EQUATION [J].
BOCK, TL ;
KRUSKAL, MD .
PHYSICS LETTERS A, 1979, 74 (3-4) :173-176
[3]   PAINLEVE EXPANSIONS FOR NONINTEGRABLE EVOLUTION-EQUATIONS [J].
CARIELLO, F ;
TABOR, M .
PHYSICA D, 1989, 39 (01) :77-94
[4]   New double periodic and multiple soliton solutions of the generalized (2+1)-dimensional Boussinesq equation [J].
Chen, HT ;
Zhang, HQ .
CHAOS SOLITONS & FRACTALS, 2004, 20 (04) :765-769
[5]   New multiple soliton solutions to the general Burgers-Fisher equation and the Kuramoto-Sivashinsky equation [J].
Chen, HT ;
Zhang, HQ .
CHAOS SOLITONS & FRACTALS, 2004, 19 (01) :71-76
[6]   Jacobi elliptic function rational expansion method with symbolic computation to construct new doubly-periodic solutions of nonlinear evolution equations [J].
Chen, Y ;
Wang, Q ;
Li, B .
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2004, 59 (09) :529-536
[7]   The Weierstrass elliptic function expansion method and its applications in nonlinear wave equations [J].
Chen, Yong ;
Yan, Zhenya .
CHAOS SOLITONS & FRACTALS, 2006, 29 (04) :948-964
[8]   NEW SIMILARITY SOLUTIONS FOR THE MODIFIED BOUSSINESQ EQUATION [J].
CLARKSON, PA .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (13) :2355-2367
[9]   Modified extended tanh-function method for solving nonlinear partial differential equations [J].
Elwakil, SA ;
El-labany, SK ;
Zahran, MA ;
Sabry, R .
PHYSICS LETTERS A, 2002, 299 (2-3) :179-188
[10]   Two new applications of the homogeneous balance method [J].
Fan, EG .
PHYSICS LETTERS A, 2000, 265 (5-6) :353-357