Optimal control problems for stochastic delay evolution equations in Banach spaces

被引:9
作者
Zhou, Jianjun [1 ]
Zhang, Zufeng [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Hubei, Peoples R China
关键词
optimal control; Hamilton-Jacobi-Bellman equations; stochastic delay evolution equations; backward stochastic differential equations; Banach spaces; NONLINEAR 2ND-ORDER EQUATIONS; HAMILTON-JACOBI EQUATIONS; DIFFERENTIAL-EQUATIONS; INFINITE DIMENSIONS; HILBERT-SPACES; KOLMOGOROV EQUATIONS; VISCOSITY SOLUTIONS; BELLMAN EQUATIONS; REGULAR SOLUTIONS; BOUNDED MEMORY;
D O I
10.1080/00207179.2011.592999
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider the optimal control for a Banach space valued stochastic delay evolution equation. The existence and uniqueness of the mild solution for the associated Hamilton-Jacobi-Bellman equations are obtained by means of backward stochastic differential equations. An application to optimal control of stochastic delay partial differential equations is also given.
引用
收藏
页码:1295 / 1309
页数:15
相关论文
共 29 条
[1]  
[Anonymous], 1993, APPL MATH
[2]  
BARBU V, 1983, PITMAN RES NOTES MAT, V86
[4]   2ND-ORDER HAMILTON-JACOBI EQUATIONS IN INFINITE DIMENSIONS [J].
CANNARSA, P ;
DAPRATO, G .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1991, 29 (02) :474-492
[5]  
CANNARSA P, 1992, PITMAN RES NOTES MAT, V286, P72
[6]  
Chang MH, 2006, LECT NOTES OPER RES, V6, P82
[7]   Optimal control of stochastic functional differential equations with a bounded memory [J].
Chang, Mou-Hsiung ;
Pang, Tao ;
Pemy, Moustapha .
STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2008, 80 (01) :69-96
[8]  
Dunford N, 1958, Linear operators, part I: general theory
[9]   Backward stochastic differential equations in finance [J].
El Karoui, N ;
Peng, S ;
Quenez, MC .
MATHEMATICAL FINANCE, 1997, 7 (01) :1-71
[10]  
ELKAROUI N, 1997, PITMAN RES NOTES MAT, V364