Highly Crystalline Mesoporous C60 with Ordered Pores: A Class of Nanomaterials for Energy Applications

被引:81
作者
Benzigar, Mercy R. [1 ]
Joseph, Stalin [1 ]
Ilbeygi, Hamid [1 ]
Park, Dae-Hwan [2 ]
Sarkar, Sujoy [3 ,4 ]
Chandra, Goutam [3 ,4 ]
Umapathy, Siva [3 ,4 ]
Srinivasan, Sampath [3 ,4 ]
Talapaneni, Siddulu Naidu [2 ]
Vinu, Ajayan [1 ,2 ]
机构
[1] Univ South Australia, FII, Div Informat Technol Energy & Environm DivITEE, Adelaide, SA 5095, Australia
[2] Univ Newcastle, Fac Engn & Built Environm, GICAN, Callaghan, NSW 2308, Australia
[3] Indian Inst Sci IISc, Dept Inorgan & Phys Chem, Bangalore 560012, Karnataka, India
[4] Indian Inst Sci IISc, Dept Instrumentat & Appl Phys, Bangalore 560012, Karnataka, India
基金
澳大利亚研究理事会;
关键词
fullerenes; mesoporous materials; nanotemplating; SBA-15; BIOSYNTHESIS; SIDEROPHORES; BACTERIA; TRANSPORT;
D O I
10.1002/anie.201710888
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Highly ordered mesoporous C-60 with a well-ordered porous structure and a high crystallinity is prepared through the nanohard templating method using a saturated solution of C-60 in 1-chloronaphthalene (51 mgmL(-1)) as a C-60 precursor and SBA-15 as a hard template. The high solubility of C-60 in 1-chloronaphthalene helps not only to encapsulate a huge amount of the C-60 into the mesopores of the template but also supports the oligomerization of C-60 and the formation of crystalline walls made of C-60. The obtained mesoporous C-60 exhibits a rod-shaped morphology, a high specific surface area (680 m(2) g(-1)), tuneable pores, and a highly crystalline wall structure. This exciting ordered mesoporous C-60 offers high supercapacitive performance and a high selectivity to H2O2 production and methanol tolerance for ORR. This simple strategy could be adopted to make a series of mesoporous fullerenes with different structures and carbon atoms as a new class of energy materials.
引用
收藏
页码:569 / 573
页数:5
相关论文
共 23 条
[1]  
Alka Verma Alka Verma, 2001, Indian Journal of Microbiology, V41, P305
[2]  
Baars O.P., 2016, APPL ENG MATLAB CONC, P191
[3]   The Siderophore Metabolome of Azotobacter vinelandii [J].
Baars, Oliver ;
Zhang, Xinning ;
Morel, Francois M. M. ;
Seyedsayamdost, Mohammad R. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2016, 82 (01) :27-39
[4]   ChelomEx: Isotope-Assisted Discovery of Metal Chelates in Complex Media Using High-Resolution LC-MS [J].
Baars, Oliver ;
Morel, Francois M. M. ;
Perlman, David H. .
ANALYTICAL CHEMISTRY, 2014, 86 (22) :11298-11305
[5]   Inoculants of plant growth-promoting bacteria for use in agriculture [J].
Bashan, Y .
BIOTECHNOLOGY ADVANCES, 1998, 16 (04) :729-770
[6]  
Becking J. H., 1981, The prokaryotes. A handbook on habitats, isolation, and identification of bacteria. Volumes I and II, P795
[7]  
Brown M. E., 1968, MICROBIOLOGY, V53, P135
[8]   Genetics and assembly line enzymology of siderophore biosynthesis in bacteria [J].
Crosa, JH ;
Walsh, CT .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 2002, 66 (02) :223-+
[9]   Structural Characterization and High-Throughput Screening of Inhibitors of PvdQ, an NTN Hydrolase Involved in Pyoverdine Synthesis [J].
Drake, Eric J. ;
Gulick, Andrew M. .
ACS CHEMICAL BIOLOGY, 2011, 6 (11) :1277-1286
[10]  
Franke J., 2013, ANGEW CHEM, V125, P8429