Synchronization of coupled bistable chaotic systems:: experimental study

被引:30
作者
Pisarchik, Alexander N. [1 ]
Jaimes-Reategui, Rider [2 ]
Garcia-Lopez, J. Hugo [2 ]
机构
[1] Ctr Invest Opt, Guanajuato 37150, Mexico
[2] Univ Guanajuato, Ctr Univ Lagos, Jalisco 47460, Mexico
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2008年 / 366卷 / 1864期
关键词
synchronization; chaos; multistability; electronic circuits;
D O I
10.1098/rsta.2007.2103
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We carried out an experimental study of the synchronization of two unidirectionally coupled Rossler-like electronic circuits with two coexisting chaotic attractors. Different stages of synchronization are identified on the route from asynchronous motion to complete synchronization, as the coupling parameter is increased: intermittent asynchronous jumps between coexisting attractors; intermittent anticipating phase synchronization; and generalized synchronization in the form of subharmonic entrainment terminated by complete synchronization. All these regimes are analysed with time-series, power spectra and phase-space plots of the drive and response oscillators. The experimental study implicitly confirms the results of numerical simulations.
引用
收藏
页码:459 / 473
页数:15
相关论文
共 27 条
[1]  
Afraimovich V. S., 1986, Radiophysics and Quantum Electronics, V29, P795, DOI 10.1007/BF01034476
[2]   Chaos-based communications at high bit rates using commercial fibre-optic links [J].
Argyris, A ;
Syvridis, D ;
Larger, L ;
Annovazzi-Lodi, V ;
Colet, P ;
Fischer, I ;
García-Ojalvo, J ;
Mirasso, CR ;
Pesquera, L ;
Shore, KA .
NATURE, 2005, 438 (7066) :343-346
[3]   BUBBLING OF ATTRACTORS AND SYNCHRONIZATION OF CHAOTIC OSCILLATORS [J].
ASHWIN, P ;
BUESCU, J ;
STEWART, I .
PHYSICS LETTERS A, 1994, 193 (02) :126-139
[4]   From generalized synchrony to topological decoherence: Emergent sets in coupled chaotic systems [J].
Barreto, E ;
So, P ;
Gluckman, BJ ;
Schiff, SJ .
PHYSICAL REVIEW LETTERS, 2000, 84 (08) :1689-1692
[5]   The synchronization of chaotic systems [J].
Boccaletti, S ;
Kurths, J ;
Osipov, G ;
Valladares, DL ;
Zhou, CS .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 366 (1-2) :1-101
[6]  
Carroll T., 1995, NONLINEAR DYNAMICS C
[7]   Anticipating the response of excitable systems driven by random forcing [J].
Ciszak, M ;
Calvo, O ;
Masoller, C ;
Mirasso, CR ;
Toral, R .
PHYSICAL REVIEW LETTERS, 2003, 90 (20) :4-204102
[8]   COMMUNICATING WITH CHAOS [J].
HAYES, S ;
GREBOGI, C ;
OTT, E .
PHYSICAL REVIEW LETTERS, 1993, 70 (20) :3031-3034
[9]   SYNCHRONIZATION OF CHAOS USING CONTINUOUS CONTROL [J].
KAPITANIAK, T .
PHYSICAL REVIEW E, 1994, 50 (02) :1642-1644
[10]   Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems [J].
Kocarev, L ;
Parlitz, U .
PHYSICAL REVIEW LETTERS, 1996, 76 (11) :1816-1819