Collective many-body bounce in the breathing-mode oscillations of a Tonks-Girardeau gas

被引:22
作者
Atas, Y. Y. [1 ]
Bouchoule, I. [2 ]
Gangardt, D. M. [3 ]
Kheruntsyan, K. V. [1 ]
机构
[1] Univ Queensland, Sch Math & Phys, Brisbane, Qld 4072, Australia
[2] Univ Paris Sud 11, CNRS, Inst Opt, Lab Charles Fabry, 2 Ave Augustin Fresnel, F-91127 Palaiseau, France
[3] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England
基金
澳大利亚研究理事会;
关键词
BOSE-EINSTEIN CONDENSATE; IMPENETRABLE BOSONS; ULTRACOLD GASES; EXCITATIONS; SYSTEMS; RELAXATION; SYMMETRY; DYNAMICS;
D O I
10.1103/PhysRevA.96.041605
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We analyze the breathing-mode oscillations of a harmonically quenched Tonks-Giradeau (TG) gas using an exact finite-temperature dynamical theory. We predict a striking collective manifestation of impenetrability-a collective many-body bounce effect. The effect, although being invisible in the evolution of the in situ density profile of the gas, can be revealed through a nontrivial periodic narrowing of its momentum distribution, taking place at twice the rate of the fundamental breathing-mode frequency. We identify physical regimes for observing the many-body bounce and construct the respective nonequilibrium phase diagram as a function of the quench strength and the initial temperature of the gas. We also develop a finite-temperature hydrodynamic theory of the TG gas wherein the many-body bounce is explained by an increased thermodynamic pressure during the isentropic compression cycle, which acts as a potential barrier for the particles to bounce off.
引用
收藏
页数:6
相关论文
共 46 条
[1]  
[Anonymous], 1998, QUANTUM MECH
[2]   Exact nonequilibrium dynamics of finite-temperature Tonks-Girardeau gases [J].
Atas, Y. Y. ;
Gangardt, D. M. ;
Bouchoule, I. ;
Kheruntsyan, K. V. .
PHYSICAL REVIEW A, 2017, 95 (04)
[3]  
Atas Y. Y., UNPUB
[4]   Many-body physics with ultracold gases [J].
Bloch, Immanuel ;
Dalibard, Jean ;
Zwerger, Wilhelm .
REVIEWS OF MODERN PHYSICS, 2008, 80 (03) :885-964
[5]   Finite-temperature hydrodynamics for one-dimensional Bose gases: Breathing-mode oscillations as a case study [J].
Bouchoule, I. ;
Szigeti, S. S. ;
Davis, M. J. ;
Kheruntsyan, K. V. .
PHYSICAL REVIEW A, 2016, 94 (05)
[6]   One dimensional bosons: From condensed matter systems to ultracold gases [J].
Cazalilla, M. A. ;
Citro, R. ;
Giamarchi, T. ;
Orignac, E. ;
Rigol, M. .
REVIEWS OF MODERN PHYSICS, 2011, 83 (04) :1405-1466
[7]   Focus on dynamics and thermalization in isolated quantum many-body systems [J].
Cazalilla, M. A. ;
Rigol, M. .
NEW JOURNAL OF PHYSICS, 2010, 12
[8]   Bosonizing one-dimensional cold atomic gases [J].
Cazalilla, MA .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2004, 37 (07) :S1-S47
[9]   Collective modes of a harmonically trapped one-dimensional Bose gas: The effects of finite particle number and nonzero temperature [J].
Chen, Xiao-Long ;
Li, Yun ;
Hu, Hui .
PHYSICAL REVIEW A, 2015, 91 (06)
[10]   Monopole Excitations of a Harmonically Trapped One-Dimensional Bose Gas from the Ideal Gas to the Tonks-Girardeau Regime [J].
Choi, S. ;
Dunjko, V. ;
Zhang, Z. D. ;
Olshanii, M. .
PHYSICAL REVIEW LETTERS, 2015, 115 (11)