Data-driven eigensolution analysis based on a spatio-temporal Koopman decomposition, with applications to high-order methods

被引:12
作者
Kou, Jiaqing [1 ,2 ]
Le Clainche, Soledad [1 ]
Ferrer, Esteban [1 ,3 ]
机构
[1] Univ Politecn Madrid, ETSIAE UPM Sch Aeronaut, Plaza Cardenal Cisneros 3, E-28040 Madrid, Spain
[2] NUMECA Int SA, Chaussee Hulpe 187, B-1170 Brussels, Belgium
[3] Univ Politecn Madrid, Ctr Computat Simulat, Campus Montegancedo, Madrid 28660, Spain
基金
欧盟地平线“2020”;
关键词
Eigensolution analysis; Dispersion-diffusion analysis; Flux reconstruction; Spectral/hp methods; Data-driven methods; Koopman analysis; DISCONTINUOUS GALERKIN METHOD; FOURIER-ANALYSIS; CONNECTIONS; INSIGHTS; SCHEMES; DG;
D O I
10.1016/j.jcp.2021.110798
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We propose a data-driven method to perform eigensolution analyses and quantify numerical errors in a non-intrusive manner. In classic eigensolution analysis methods, explicit matrices need to be constructed, whilst in our approach only solution snapshots from numerical simulations are required to quantify the numerical errors (dispersion and diffusion) in time and/or space. This new approach is based on a recent data-driven method: the Spatio-Temporal Koopman Decomposition (STKD), that approximates spatio-temporal data as a linear combination of standing or travelling waves growing or decaying exponentially in time and/or space. We validate our approach with classic matrix-based approaches, where accurate predictions of the dispersion-dissipation behaviour for both temporal and spatial eigensolution analyses are reported. (C) 2021 The Author(s). Published by Elsevier Inc.
引用
收藏
页数:6
相关论文
共 23 条
[1]   A COMBINED-MODE FOURIER ANALYSIS OF DG METHODS FOR LINEAR PARABOLIC PROBLEMS [J].
Alhawwary, Mohammad ;
Wang, Zhijian .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (06) :A3825-A3858
[2]   Fourier analysis and evaluation of DG, FD and compact difference methods for conservation laws [J].
Alhawwary, Mohammad ;
Wang, Z. J. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 373 :835-862
[3]   Connections between the discontinuous Galerkin method and high-order flux reconstruction schemes [J].
De Grazia, D. ;
Mengaldo, G. ;
Moxey, D. ;
Vincent, P. E. ;
Sherwin, S. J. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2014, 75 (12) :860-877
[4]   An analysis of the discontinuous Galerkin method for wave propagation problems [J].
Hu, FQ ;
Hussaini, MY ;
Rasetarinera, P .
JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 151 (02) :921-946
[5]  
Huynh H., 2007, 18 AIAA COMP FLUID D
[6]   Data-driven modeling for unsteady aerodynamics and aeroelasticity [J].
Kou, Jiaqing ;
Zhang, Weiwei .
PROGRESS IN AEROSPACE SCIENCES, 2021, 125
[7]   An improved criterion to select dominant modes from dynamic mode decomposition [J].
Kou, Jiaqing ;
Zhang, Weiwei .
EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2017, 62 :109-129
[8]   Spatio-Temporal Koopman Decomposition [J].
Le Clainche, Soledad ;
Vega, Jose M. .
JOURNAL OF NONLINEAR SCIENCE, 2018, 28 (05) :1793-1842
[9]   Higher Order Dynamic Mode Decomposition [J].
Le Clainche, Soledad ;
Vega, Jose M. .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2017, 16 (02) :882-925
[10]   Design of a Smagorinsky spectral Vanishing Viscosity turbulence model for discontinuous Galerkin methods [J].
Manzanero, Juan ;
Ferrer, Esteban ;
Rubio, Gonzalo ;
Valero, Eusebio .
COMPUTERS & FLUIDS, 2020, 200