Modular symbols, Eisenstein series, and congruences

被引:3
作者
Heumann, Jay [1 ]
Vatsal, Vinayak [2 ]
机构
[1] Univ Wisconsin Stout, Menomonie, WI 54751 USA
[2] Univ British Columbia, Vancouver, BC V6T 1Z2, Canada
来源
JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX | 2014年 / 26卷 / 03期
关键词
PERIODS; FORMS;
D O I
10.5802/jtnb.886
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let E and f be an Eisenstein series and a cusp form, respectively, of the same weight k >= 2 and of the same level N, both eigenfunctions of the Hecke operators, and both normalized so that a(1) (f) = a(1)(E) = 1. The main result we prove is that when E and f are congruent mod a prime p (which we take in this paper to be a prime of (Q) over tilde lying over a rational prime p > 2), the algebraic parts of the special values L(E, x, j) and L(f, x, j) satisfy congruences mod the same prime. More explicitly, we prove that, under certain conditions,
引用
收藏
页码:709 / 756
页数:48
相关论文
共 19 条
[1]  
[Anonymous], 1969, Modular Forms and Dirichlet Series
[2]  
Bellaiche J., 2012, PREPRINT
[3]  
Cremona J. E., 1997, ALGORITHMS MODULAR E
[4]  
Diamond DI95 F., 1995, SEMINAR FERMATS LAST, V17, P39
[5]  
Friedman E., 1981, INVENT MATH, V65, P425
[6]   P-ADIC L-FUNCTIONS AND P-ADIC PERIODS OF MODULAR-FORMS [J].
GREENBERG, R ;
STEVENS, G .
INVENTIONES MATHEMATICAE, 1993, 111 (02) :407-447
[8]  
HIDA H, 1993, ELEMENTARY THEORY L
[9]  
HIRANO Y., 2014, PREPRINT
[10]   ARITHMETIC OF SPECIAL VALUES OF L-FUNCTIONS [J].
MAZUR, B .
INVENTIONES MATHEMATICAE, 1979, 55 (03) :207-240