learnMET: an R package to apply machine learning methods for genomic prediction using multi-environment trial data

被引:6
|
作者
Westhues, Cathy C. [1 ,2 ]
Simianer, Henner [2 ,3 ]
Beissinger, Timothy M. [1 ,2 ]
机构
[1] Univ Goettingen, Dept Crop Sci, Div Plant Breeding Methodol, Carl Sprengel Weg 1, D-37075 Gottingen, Germany
[2] Univ Goettingen, Ctr Integrated Breeding Res, Carl Sprengel Weg 1, Gottingen, Germany
[3] Univ Goettingen, Dept Anim Sci, Anim Breeding & Genet Grp, Albrecht Thaer Weg 3, D-37075 Gottingen, Germany
来源
G3-GENES GENOMES GENETICS | 2022年 / 12卷 / 11期
关键词
multienvironment trials; machine learning; genotype x; environment interaction; genomic prediction; R software; SELECTION; REGRESSION; PLANT;
D O I
10.1093/g3journal/jkac226
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
We introduce the R-package learnMET, developed as a flexible framework to enable a collection of analyses on multi-environment trial breeding data with machine learning-based models. learnMET allows the combination of genomic information with environmental data such as climate and/or soil characteristics. Notably, the package offers the possibility of incorporating weather data from field weather stations, or to retrieve global meteorological datasets from a NASA database. Daily weather data can be aggregated over specific periods of time based on naive (for instance, nonoverlapping 10-day windows) or phenological approaches. Different machine learning methods for genomic prediction are implemented, including gradient-boosted decision trees, random forests, stacked ensemble models, and multilayer perceptrons. These prediction models can be evaluated via a collection of cross-validation schemes that mimic typical scenarios encountered by plant breeders working with multi-environment trial experimental data in a user-friendly way. The package is published under an MIT license and accessible on GitHub.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] An R Package for Bayesian Analysis of Multi-environment and Multi-trait Multi-environment Data for Genome-Based Prediction
    Montesinos-Lopez, Osval A.
    Montesinos-Lopez, Abelardo
    Javier Luna-Vazquez, Francisco
    Toledo, Fernando H.
    Perez-Rodriguez, Paulino
    Lillemo, Morten
    Crossa, Jose
    G3-GENES GENOMES GENETICS, 2019, 9 (05): : 1355 - 1369
  • [2] Genomic prediction in multi-environment trials in maize using statistical and machine learning methods
    Valiati Barreto, Cynthia Aparecida
    das Gracas Dias, Kaio Olimpio
    de Sousa, Ithalo Coelho
    Azevedo, Camila Ferreira
    Campana Nascimento, Ana Carolina
    Moreira Guimaraes, Lauro Jose
    Guimaraes, Claudia Teixeira
    Pastina, Maria Marta
    Nascimento, Moyses
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [3] metan: An R package for multi-environment trial analysis
    Olivoto, Tiago
    Lucio, Alessandro Dal'Col
    METHODS IN ECOLOGY AND EVOLUTION, 2020, 11 (06): : 783 - 789
  • [4] Barley Grain Proteome Assessment Using Multi-Environment Trial Data and Machine Learning
    Ramanan, Maany
    Bettenhausen, Harmonie
    Grigorean, Gabriela
    Diepenbrock, Christine
    Fox, Glen Patrick
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2024, 72 (47) : 26416 - 26430
  • [5] Multi-trait, Multi-environment Deep Learning Modeling for Genomic-Enabled Prediction of Plant Traits
    Montesinos-Lopez, Osval A.
    Montesinos-Lopez, Abelardo
    Crossa, Jose
    Gianola, Daniel
    Hernandez-Suarez, Carlos M.
    Martin-Vallejo, Javier
    G3-GENES GENOMES GENETICS, 2018, 8 (12): : 3829 - 3840
  • [6] FieldSimR: an R package for simulating plot data in multi-environment field trials
    Werner, Christian R.
    Gemenet, Dorcus C.
    Tolhurst, Daniel J.
    FRONTIERS IN PLANT SCIENCE, 2024, 15
  • [7] Multi-trait and multi-environment genomic prediction for flowering traits in maize: a deep learning approach
    Mora-Poblete, Freddy
    Maldonado, Carlos
    Henrique, Luma
    Uhdre, Renan
    Scapim, Carlos Alberto
    Mangolim, Claudete Aparecida
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [8] Accurate genomic prediction for grain yield and grain moisture content of maize hybrids using multi-environment data
    Wang, Jingxin
    Liu, Liwei
    He, Kunhui
    Gebrewahid, Takele Weldu
    Gao, Shang
    Tian, Qingzhen
    Li, Zhanyi
    Song, Yiqun
    Guo, Yiliang
    Li, Yanwei
    Cui, Qinxin
    Zhang, Luyan
    Wang, Jiankang
    Huang, Changling
    Li, Liang
    Guo, Tingting
    Li, Huihui
    JOURNAL OF INTEGRATIVE PLANT BIOLOGY, 2025,
  • [9] Modeling the impact of resource allocation decisions on genomic prediction using maize multi-environment data
    Schoemaker, Dylan L.
    Lima, Dayane Cristina
    de Leon, Natalia
    Kaeppler, Shawn M.
    CROP SCIENCE, 2024, 64 (05) : 2748 - 2767
  • [10] Multi-environment Genomic Prediction of Plant Traits Using Deep Learners With Dense Architecture
    Montesinos-Lopez, Abelardo
    Montesinos-Lopez, Osval A.
    Gianola, Daniel
    Crossa, Jose
    Hernandez-Suarez, Carlos M.
    G3-GENES GENOMES GENETICS, 2018, 8 (12): : 3813 - 3828