LEARNING ADAPTIVE SELECTION NETWORK FOR REAL-TIME VISUAL TRACKING

被引:0
作者
Xiong, Jiangfeng [1 ]
Xu, Xiangmin [1 ]
Cai, Bolun [1 ]
Xing, Xiaofen [1 ]
Guo, Kailing [1 ]
机构
[1] South China Univ Technol, Sch Elect & Informat Engn, Guangzhou, Peoples R China
来源
2018 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME) | 2018年
关键词
online adaption; feature selection; real-time tracking; OBJECT TRACKING;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Offline-trained trackers based on convolutional neural networks (CNNs) have shown great potential in achieving balanced accuracy and real-time speed. However, offline-trained trackers are prone to drift to background clutters. In this paper, we present an adaptive selection network tracker (ASNT) to address the tracking drift problem. Inspired by feature selection technique used in other vision problems, we introduce a learnable selection unit for Siamese network based trackers. The selection unit enables the tracker to select relevant feature map automatically for the target. Channel dropout is applied in the selection unit to improve generalization performance for convolutional layers. To further improve the discrimination between background clutters and the target, an adaptive method is used to initialize the tracker for each video sequence. Experiments on OTB-2013 and VOT2014 datasets demonstrate that our ASNT tracker has a comparable performance against state-of-the-art methods, yet can run at a speed of over 100 fps.
引用
收藏
页数:6
相关论文
共 25 条
  • [1] [Anonymous], 2014, BRIT MACH VIS C
  • [2] Staple: Complementary Learners for Real-Time Tracking
    Bertinetto, Luca
    Valmadre, Jack
    Golodetz, Stuart
    Miksik, Ondrej
    Torr, Philip H. S.
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 1401 - 1409
  • [3] Fully-Convolutional Siamese Networks for Object Tracking
    Bertinetto, Luca
    Valmadre, Jack
    Henriques, Joao F.
    Vedaldi, Andrea
    Torr, Philip H. S.
    [J]. COMPUTER VISION - ECCV 2016 WORKSHOPS, PT II, 2016, 9914 : 850 - 865
  • [4] DehazeNet: An End-to-End System for Single Image Haze Removal
    Cai, Bolun
    Xu, Xiangmin
    Jia, Kui
    Qing, Chunmei
    Tao, Dacheng
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (11) : 5187 - 5198
  • [5] BIT: Biologically Inspired Tracker
    Cai, Bolun
    Xu, Xiangmin
    Xing, Xiaofen
    Jia, Kui
    Miao, Jie
    Tao, Dacheng
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (03) : 1327 - 1339
  • [6] Learning Dynamic Siamese Network for Visual Object Tracking
    Guo, Qing
    Feng, Wei
    Zhou, Ce
    Huang, Rui
    Wan, Liang
    Wang, Song
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 1781 - 1789
  • [7] Struck: Structured Output Tracking with Kernels
    Hare, Sam
    Golodetz, Stuart
    Saffari, Amir
    Vineet, Vibhav
    Cheng, Ming-Ming
    Hicks, Stephen L.
    Torr, Philip H. S.
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (10) : 2096 - 2109
  • [8] Learning to Track at 100 FPS with Deep Regression Networks
    Held, David
    Thrun, Sebastian
    Savarese, Silvio
    [J]. COMPUTER VISION - ECCV 2016, PT I, 2016, 9905 : 749 - 765
  • [9] High-Speed Tracking with Kernelized Correlation Filters
    Henriques, Joao F.
    Caseiro, Rui
    Martins, Pedro
    Batista, Jorge
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (03) : 583 - 596
  • [10] Hu J, 2017, ARXIV PREPRINT ARXIV