Fast Li+ Conduction Mechanism and Interfacial Chemistry of a NASICON/Polymer Composite Electrolyte

被引:280
作者
Wu, Nan [1 ,2 ,3 ]
Chien, Po-Hsiu [4 ]
Li, Yutao [1 ,2 ]
Dolocan, Andrei [1 ,2 ]
Xu, Henghui [1 ,2 ]
Xu, Biyi [1 ,2 ]
Grundish, Nicholas S. [1 ,2 ]
Jin, Haibo [3 ]
Hu, Yan-Yan [4 ]
Goodenough, John B. [1 ,2 ]
机构
[1] Univ Texas Austin, Mat Sci & Engn Program, Austin, TX 78712 USA
[2] Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA
[3] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing Key Lab Construct Tailorable Adv Funct Ma, Beijing 100081, Peoples R China
[4] Florida State Univ, Dept Chem & Biochem, Tallahassee, FL 32306 USA
基金
美国国家科学基金会;
关键词
LITHIUM DENDRITE FORMATION; SOLID-STATE; POLYMER ELECTROLYTES; ION-TRANSPORT; PEO-LITFSI; BATTERIES; NANOCOMPOSITE; LI7LA3ZR2O12; ENHANCEMENT; ORIGIN;
D O I
10.1021/jacs.9b12233
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The unclear Li+ local environment and Li+ conduction mechanism in solid polymer electrolytes, especially in a ceramic/polymer composite electrolyte, hinder the design and development of a new composite electrolyte. Moreover, both the low room-temperature Li+ conductivity and large interfacial resistance with a metallic lithium anode of a polymer membrane limit its application below a relatively high temperature. Here we have identified the Li+ distribution and Li+ transport mechanism in a composite polymer electrolyte by investigating a new solid poly(ethylene oxide) (PEO)-based NASICON-LiZr2(PO4)(3) composite with Li-7 relaxation time and Li-6 -> Li-7 trace-exchange NMR measurements. The Li+ population of the two local environments in the composite electrolytes depends on the Li-salt concentration and the amount of ceramic filler. A composite electrolyte with a [EO]/[Li+] ratio n = 10 and 25 wt % LZP filler has a high Li+ conductivity of 1.2 x 10(-4) S cm(-1) at 30 degrees C and a low activation energy owing to the additional Li+ in the mobile A2 environment. Moreover, an in situ formed solid electrolyte interphase layer from the reaction between LiZr2(PO4)(3) and a metallic lithium anode stabilized the Li/composite-electrolyte interface and reduced the interfacial resistance, which provided a symmetric Li/Li cell and all-solid-state Li/LiFePO4 and Li/LiNi0.8Co0.1Mn0.1O2 cells a good cycling performance at 40 degrees C.
引用
收藏
页码:2497 / 2505
页数:9
相关论文
共 48 条
[11]   Electrical, thermal and NMR investigation of composite solid electrolytes based on PEO, LiI and high surface area inorganic oxides [J].
Dai, Y ;
Wang, Y ;
Greenbaum, SG ;
Bajue, SA ;
Golodnitsky, D ;
Ardel, G ;
Strauss, E ;
Peled, E .
ELECTROCHIMICA ACTA, 1998, 43 (10-11) :1557-1561
[12]   Lithium-7 NMR studies of concentrated LiI/PEO-based solid electrolytes [J].
Dai, Y ;
Greenbaum, S ;
Golodnitsky, D ;
Ardel, G ;
Strauss, E ;
Peled, E ;
Rosenberg, Y .
SOLID STATE IONICS, 1998, 106 (1-2) :25-32
[13]   Li6PS5X:: A class of crystalline Li-rich solids with an unusually high Li+ mobility [J].
Deiseroth, Hans-Joerg ;
Kong, Shiao-Tong ;
Eckert, Hellmut ;
Vannahme, Julia ;
Reiner, Christof ;
Zaiss, Torsten ;
Schlosser, Marc .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (04) :755-758
[14]   Dendrite-Free Li-Metal Battery Enabled by a Thin Asymmetric Solid Electrolyte with Engineered Layers [J].
Duan, Hui ;
Yin, Ya-Xia ;
Shi, Yang ;
Wang, Peng-Fei ;
Zhang, Xu-Dong ;
Yang, Chun-Peng ;
Shi, Ji-Lei ;
Wen, Rui ;
Guo, Yu-Guo ;
Wan, Li-Jun .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (01) :82-85
[15]   Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries [J].
Fu, Kun ;
Gong, Yunhui ;
Dai, Jiaqi ;
Gong, Amy ;
Han, Xiaogang ;
Yao, Yonggang ;
Wang, Chengwei ;
Wang, Yibo ;
Chen, Yanan ;
Yan, Chaoyi ;
Li, Yiju ;
Wachsman, Eric D. ;
Hu, Liangbing .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (26) :7094-7099
[16]   The Li-Ion Rechargeable Battery: A Perspective [J].
Goodenough, John B. ;
Park, Kyu-Sung .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (04) :1167-1176
[17]   High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes [J].
Han, Fudong ;
Westover, Andrew S. ;
Yue, Jie ;
Fan, Xiulin ;
Wang, Fei ;
Chi, Miaofang ;
Leonard, Donovan N. ;
Dudney, Nancyj ;
Wang, Howard ;
Wang, Chunsheng .
NATURE ENERGY, 2019, 4 (03) :187-196
[18]  
Kamaya N, 2011, NAT MATER, V10, P682, DOI [10.1038/NMAT3066, 10.1038/nmat3066]
[19]   High-power all-solid-state batteries using sulfide superionic conductors [J].
Kato, Yuki ;
Hori, Satoshi ;
Saito, Toshiya ;
Suzuki, Kota ;
Hirayama, Masaaki ;
Mitsui, Akio ;
Yonemura, Masao ;
Iba, Hideki ;
Kanno, Ryoji .
NATURE ENERGY, 2016, 1
[20]   Capacity Fade in Solid-State Batteries: Interphase Formation and Chemomechanical Processes in Nickel-Rich Layered Oxide Cathodes and Lithium Thiophosphate Solid Electrolytes [J].
Koerver, Raimund ;
Ayguen, Isabel ;
Leichtweiss, Thomas ;
Dietrich, Christian ;
Zhang, Wenbo ;
Binder, Jan O. ;
Hartmann, Pascal ;
Zeier, Wolfgang G. ;
Janek, Juergen .
CHEMISTRY OF MATERIALS, 2017, 29 (13) :5574-5582