Fast Li+ Conduction Mechanism and Interfacial Chemistry of a NASICON/Polymer Composite Electrolyte

被引:280
作者
Wu, Nan [1 ,2 ,3 ]
Chien, Po-Hsiu [4 ]
Li, Yutao [1 ,2 ]
Dolocan, Andrei [1 ,2 ]
Xu, Henghui [1 ,2 ]
Xu, Biyi [1 ,2 ]
Grundish, Nicholas S. [1 ,2 ]
Jin, Haibo [3 ]
Hu, Yan-Yan [4 ]
Goodenough, John B. [1 ,2 ]
机构
[1] Univ Texas Austin, Mat Sci & Engn Program, Austin, TX 78712 USA
[2] Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA
[3] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing Key Lab Construct Tailorable Adv Funct Ma, Beijing 100081, Peoples R China
[4] Florida State Univ, Dept Chem & Biochem, Tallahassee, FL 32306 USA
基金
美国国家科学基金会;
关键词
LITHIUM DENDRITE FORMATION; SOLID-STATE; POLYMER ELECTROLYTES; ION-TRANSPORT; PEO-LITFSI; BATTERIES; NANOCOMPOSITE; LI7LA3ZR2O12; ENHANCEMENT; ORIGIN;
D O I
10.1021/jacs.9b12233
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The unclear Li+ local environment and Li+ conduction mechanism in solid polymer electrolytes, especially in a ceramic/polymer composite electrolyte, hinder the design and development of a new composite electrolyte. Moreover, both the low room-temperature Li+ conductivity and large interfacial resistance with a metallic lithium anode of a polymer membrane limit its application below a relatively high temperature. Here we have identified the Li+ distribution and Li+ transport mechanism in a composite polymer electrolyte by investigating a new solid poly(ethylene oxide) (PEO)-based NASICON-LiZr2(PO4)(3) composite with Li-7 relaxation time and Li-6 -> Li-7 trace-exchange NMR measurements. The Li+ population of the two local environments in the composite electrolytes depends on the Li-salt concentration and the amount of ceramic filler. A composite electrolyte with a [EO]/[Li+] ratio n = 10 and 25 wt % LZP filler has a high Li+ conductivity of 1.2 x 10(-4) S cm(-1) at 30 degrees C and a low activation energy owing to the additional Li+ in the mobile A2 environment. Moreover, an in situ formed solid electrolyte interphase layer from the reaction between LiZr2(PO4)(3) and a metallic lithium anode stabilized the Li/composite-electrolyte interface and reduced the interfacial resistance, which provided a symmetric Li/Li cell and all-solid-state Li/LiFePO4 and Li/LiNi0.8Co0.1Mn0.1O2 cells a good cycling performance at 40 degrees C.
引用
收藏
页码:2497 / 2505
页数:9
相关论文
共 48 条
[1]   Hot-pressed, solvent-free, nanocomposite, PEO-based electrolyte membranes II.: All solid-state Li/LiFePO4 polymer batteries [J].
Appetecchi, GB ;
Hassoun, J ;
Scrosati, B ;
Croce, F ;
Cassel, F ;
Salomon, M .
JOURNAL OF POWER SOURCES, 2003, 124 (01) :246-253
[2]   POLYMER ELECTROLYTES [J].
ARMAND, MB .
ANNUAL REVIEW OF MATERIALS SCIENCE, 1986, 16 :245-261
[3]   A conceptual review on polymer electrolytes and ion transport models [J].
Aziz, Shujahadeen B. ;
Woo, Thompson J. ;
Kadir, M. F. Z. ;
Ahmed, Hameed M. .
JOURNAL OF SCIENCE-ADVANCED MATERIALS AND DEVICES, 2018, 3 (01) :1-17
[4]   CONTACT ION-PAIR FORMATION AND ETHER OXYGEN COORDINATION IN THE POLYMER ELECTROLYTES M[N(CF3SO2)(2)](2)PEO(N) FOR M=MG, CA, SR AND BA [J].
BAKKER, A ;
GEJJI, S ;
LINDGREN, J ;
HERMANSSON, K ;
PROBST, MM .
POLYMER, 1995, 36 (23) :4371-4378
[5]   RELAXATION EFFECTS IN NUCLEAR MAGNETIC RESONANCE ABSORPTION [J].
BLOEMBERGEN, N ;
PURCELL, EM ;
POUND, RV .
PHYSICAL REVIEW, 1948, 73 (07) :679-712
[6]   Solid polymer electrolytes incorporating cubic Li7La3Zr2O12 for all-solid-state lithium rechargeable batteries [J].
Chen, Fei ;
Yang, Dunjie ;
Zha, Wenping ;
Zhu, Bodi ;
Zhang, Yanhua ;
Li, Junyang ;
Gu, Yuping ;
Shen, Qiang ;
Zhang, Lianmeng ;
Sadoway, Donald R. .
ELECTROCHIMICA ACTA, 2017, 258 :1106-1114
[7]   PEO/garnet composite electrolytes for solid-state lithium batteries: From "ceramic-in-polymer" to "polymer-in-ceramic" [J].
Chen, Long ;
Li, Yutao ;
Li, Shuai-Peng ;
Fan, Li-Zhen ;
Nan, Ce-Wen ;
Goodenough, John B. .
NANO ENERGY, 2018, 46 :176-184
[8]   The origin of high electrolyte-electrode interfacial resistances in lithium cells containing garnet type solid electrolytes [J].
Cheng, Lei ;
Crumlin, Ethan J. ;
Chen, Wei ;
Qiao, Ruimin ;
Hou, Huaming ;
Lux, Simon Franz ;
Zorba, Vassilia ;
Russo, Richard ;
Kostecki, Robert ;
Liu, Zhi ;
Persson, Kristin ;
Yang, Wanli ;
Cabana, Jordi ;
Richardson, Thomas ;
Chen, Guoying ;
Doeff, Marca .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (34) :18294-18300
[9]   Revealing the planar chemistry of two-dimensional heterostructures at the atomic level [J].
Chou, Harry ;
Ismach, Ariel ;
Ghosh, Rudresh ;
Ruoff, Rodney S. ;
Dolocan, Andrei .
NATURE COMMUNICATIONS, 2015, 6
[10]   Nanocomposite polymer electrolytes for lithium batteries [J].
Croce, F ;
Appetecchi, GB ;
Persi, L ;
Scrosati, B .
NATURE, 1998, 394 (6692) :456-458