A note on approximation efficiency and partial quotients of Engel continued fractions

被引:4
作者
Hu, Hui [1 ]
Yu, Yueli [2 ]
Zhao, Yanfen [2 ]
机构
[1] Nanchang Hongkong Univ, Sch Math & Informat Sci, Nanchang 330063, Jiangxi, Peoples R China
[2] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Hubei, Peoples R China
关键词
Engel continued fraction; best approximation; partial quotient; Hausdorff dimension; DIMENSION; EXPANSION; NUMBERS; SETS;
D O I
10.1142/S1793042117501329
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
consider the efficiency of approximating real numbers by their convergents of Engel continued fractions (ECF). Specifically, we estimate the Hausdorff dimension of the set of points whose ECF-convergents are the best approximations infinitely often. We also obtain the Hausdorff dimensions of the Jarnik-like set and the related sets defined by some growth rates of partial quotients in ECF expansions.
引用
收藏
页码:2433 / 2443
页数:11
相关论文
共 14 条
[1]  
Besicovitch A.S., 1934, J London Math Soc, V9, P126, DOI DOI 10.1112/JLMS/S1-9.2.126
[2]   Sets of exact approximation order by rational numbers [J].
Bugeaud, Y .
MATHEMATISCHE ANNALEN, 2003, 327 (01) :171-190
[3]   The efficiency of approximating real numbers by Luroth expansion [J].
Cao, Chunyun ;
Wu, Jun ;
Zhang, Zhenliang .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 2013, 63 (02) :497-513
[4]  
Falconer K., 2014, Fractal geometry: mathematical foundations and applications
[5]   Arithmetic and metric properties of Oppenheim continued fraction expansions [J].
Fan, Ai-Hua ;
Wang, Bao-Wei ;
Wu, Jun .
JOURNAL OF NUMBER THEORY, 2007, 127 (01) :64-82
[6]  
Good IJ, 1941, P CAMB PHILOS SOC, V37, P199
[7]  
Hartono Y., 2002, J THEOR NOMBRES BORD, V14, P497
[8]   A PROBLEM IN FRACTIONAL DIMENSION THEORY OF CONTINUED FRACTIONS [J].
HIRST, KE .
QUARTERLY JOURNAL OF MATHEMATICS, 1970, 21 (81) :29-&
[9]  
Jarnik V., 1929, MAT SBORNIK, P371
[10]   On a new continued fraction expansion with non-decreasing partial quotients [J].
Kraaikamp, C ;
Wu, J .
MONATSHEFTE FUR MATHEMATIK, 2004, 143 (04) :285-298