Fractional Order Linear Active Disturbance Rejection Control for Linear Flexible Joint System

被引:2
作者
Mehedi, Ibrahim M. [1 ,2 ]
Mansouri, Rachid [3 ]
Al-Saggaf, Ubaid M. [1 ,2 ]
Iskanderani, Ahmed I. M. [1 ]
Bettayeb, Maamar [4 ]
Aljohani, Abdulah Jeza [1 ,2 ]
Palaniswamy, Thangam [1 ]
Latif, Shaikh Abdul [5 ]
Latif, Abdul [6 ]
机构
[1] King Abdulaziz Univ, Dept Elect & Comp Engn ECE, Jeddah 21589, Saudi Arabia
[2] King Abdulaziz Univ, Ctr Excellence Intelligent Engn Syst CEIES, Jeddah 21589, Saudi Arabia
[3] Mouloud Mammeri Univ, L2CSP Lab, Tizi Ouzou, Algeria
[4] Univ Sharjah, Elect & Comp Engn Dept, Sharjah, U Arab Emirates
[5] King Abdulaziz Univ, Dept Nucl Engn, Jeddah 21589, Saudi Arabia
[6] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2022年 / 70卷 / 03期
关键词
Active disturbance rejection; fractional calculus; ADRC; pole placement; linear flexible joint system; robust control; SLIDING-MODE; STABILIZATION; FEEDBACK; DESIGN;
D O I
10.32604/cmc.2022.021018
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A linear flexible joint system using fractional order linear active disturbance rejection control is studied in this paper. With this control scheme, the performance against disturbances, uncertainties, and attenuation is enhanced. Linear active disturbance rejection control (LADRC) is mainly based on an extended state observer (ESO) technology. A fractional integral (FOI) action is combined with the LADRC technique which proposes a hybrid control scheme like FO-LADRC. Incorporating this FOI action improves the robustness of the standard LADRC. The set-point tracking of the proposed FO-LADRC scheme is designed by Bode's ideal transfer function (BITF) based robust closed-loop concept, an appropriate pole placement method. The effectiveness of the proposed FO-LADRC scheme is illustrated through experimental results on the linear flexible joint system (LFJS). The results show the enhancement of the robustness with disturbance rejection. Furthermore, a comparative analysis is presented with the results obtained using the integer-order LADRC and FO-LADRC scheme.
引用
收藏
页码:5133 / 5142
页数:10
相关论文
共 28 条
[1]   State feedback with fractional integral control design based on the Bode's ideal transfer function [J].
Al-Saggaf, U. M. ;
Mehedi, I. M. ;
Mansouri, R. ;
Bettayeb, M. .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2016, 47 (01) :149-161
[2]   Fractional-order controller design for a heat flow process [J].
Al-Saggaf, Ubaid ;
Mehedi, Ibrahim ;
Bettayeb, Maamar ;
Mansouri, Rachid .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART I-JOURNAL OF SYSTEMS AND CONTROL ENGINEERING, 2016, 230 (07) :680-691
[3]   Robustness Improvement of the Fractional-Order LADRC Scheme for Integer High-Order System [J].
Al-Saggaf, Ubaid M. ;
Mansouri, Rachid ;
Bettayeb, Maamar ;
Mehedi, Ibrahim M. ;
Munawar, Khalid .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2021, 68 (09) :8572-8581
[4]   Rotary flexible joint control by fractional order controllers [J].
Al-Saggaf, Ubaid M. ;
Mehedi, Ibrahim M. ;
Mansouri, Rachid ;
Bettayeb, Maamar .
INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2017, 15 (06) :2561-2569
[5]   Robust H2 filtering for uncertain linear systems:: LMI based methods with parametric Lyapunov functions [J].
Barbosa, KA ;
de Souza, CE ;
Trofino, A .
SYSTEMS & CONTROL LETTERS, 2005, 54 (03) :251-262
[6]   Stabilization of an inverted pendulum-cart system by fractional PI-state feedback [J].
Bettayeb, M. ;
Boussalem, C. ;
Mansouri, R. ;
Al-Saggaf, U. M. .
ISA TRANSACTIONS, 2014, 53 (02) :508-516
[7]   Operational calculus for Caputo fractional calculus with respect to functions and the associated fractional differential equations [J].
Fahad, Hafiz Muhammad ;
Fernandez, Arran .
APPLIED MATHEMATICS AND COMPUTATION, 2021, 409
[8]   Pseudo-state feedback stabilization of commensurate fractional order systems [J].
Farges, Christophe ;
Moze, Mathieu ;
Sabatier, Jocelyn .
AUTOMATICA, 2010, 46 (10) :1730-1734
[9]   Model-free control [J].
Fliess, Michel ;
Join, Cedric .
INTERNATIONAL JOURNAL OF CONTROL, 2013, 86 (12) :2228-2252
[10]   Stability of Nonlinear Feedback Shift Registers with Periodic Input [J].
Gao, Bo ;
Liu, Xuan ;
Wu, Xiaobo ;
Li, Shudong ;
Lan, Zhongzhou ;
Lu, Hui ;
Liu, Boyan .
CMC-COMPUTERS MATERIALS & CONTINUA, 2020, 62 (02) :833-847