Numerical Algorithm for the Time-Caputo and Space-Riesz Fractional Diffusion Equation

被引:3
作者
Zhang, Yuxin [1 ]
Ding, Hengfei [1 ]
机构
[1] Tianshui Normal Univ, Sch Math & Stat, Tianshui 741001, Peoples R China
基金
中国国家自然科学基金;
关键词
Caputo derivative; Riesz derivative; Fractional diffusion equation; 65M06; 65M12; FINITE-DIFFERENCE METHOD; APPROXIMATIONS; DERIVATIVES; STABILITY; SCHEME;
D O I
10.1007/s42967-019-00032-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we develop a novel finite-difference scheme for the time-Caputo and space-Riesz fractional diffusion equation with convergence order O(tau 2-alpha +h2). The stability and convergence of the scheme are analyzed by mathematical induction. Moreover, some numerical results are provided to verify the effectiveness of the developed difference scheme.
引用
收藏
页码:57 / 72
页数:16
相关论文
共 20 条
[11]   High-order approximation to Caputo derivatives and Caputo-type advection-diffusion equations (III) [J].
Li, Hefeng ;
Cao, Jianxiong ;
Li, Changpin .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 299 :159-175
[12]   Finite difference/spectral approximations for the time-fractional diffusion equation [J].
Lin, Yumin ;
Xu, Chuanju .
JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 225 (02) :1533-1552
[13]   Finite difference approximations for fractional advection-dispersion flow equations [J].
Meerschaert, MM ;
Tadjeran, C .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 172 (01) :65-77
[14]  
Oldham K. B., 1974, FRACTIONAL CALCULUS, DOI DOI 10.1016/S0076-5392(09)60219-8
[15]  
Podlubny I., 1998, FRACTIONAL DIFFERENT
[16]   A CLASS OF SECOND ORDER DIFFERENCE APPROXIMATIONS FOR SOLVING SPACE FRACTIONAL DIFFUSION EQUATIONS [J].
Tian, Wenyi ;
Zhou, Han ;
Deng, Weihua .
MATHEMATICS OF COMPUTATION, 2015, 84 (294) :1703-1727
[17]   Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation [J].
Wang, Zhibo ;
Vong, Seakweng .
JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 277 :1-15
[18]   An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations [J].
Yuste, SB ;
Acedo, L .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 42 (05) :1862-1874
[19]   Second-Order Stable Finite Difference Schemes for the Time-Fractional Diffusion-Wave Equation [J].
Zeng, Fanhai .
JOURNAL OF SCIENTIFIC COMPUTING, 2015, 65 (01) :411-430
[20]   A FOURTH-ORDER COMPACT ADI SCHEME FOR TWO-DIMENSIONAL NONLINEAR SPACE FRACTIONAL SCHRODINGER EQUATION [J].
Zhao, Xuan ;
Sun, Zhi-Zhong ;
Hao, Zhao-Peng .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (06) :A2865-A2886