Numerical Algorithm for the Time-Caputo and Space-Riesz Fractional Diffusion Equation

被引:3
作者
Zhang, Yuxin [1 ]
Ding, Hengfei [1 ]
机构
[1] Tianshui Normal Univ, Sch Math & Stat, Tianshui 741001, Peoples R China
基金
中国国家自然科学基金;
关键词
Caputo derivative; Riesz derivative; Fractional diffusion equation; 65M06; 65M12; FINITE-DIFFERENCE METHOD; APPROXIMATIONS; DERIVATIVES; STABILITY; SCHEME;
D O I
10.1007/s42967-019-00032-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we develop a novel finite-difference scheme for the time-Caputo and space-Riesz fractional diffusion equation with convergence order O(tau 2-alpha +h2). The stability and convergence of the scheme are analyzed by mathematical induction. Moreover, some numerical results are provided to verify the effectiveness of the developed difference scheme.
引用
收藏
页码:57 / 72
页数:16
相关论文
共 20 条
[1]   A new difference scheme for the time fractional diffusion equation [J].
Alikhanov, Anatoly A. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 280 :424-438
[2]  
[Anonymous], 2014, COMMUN APPL IND MATH
[3]  
Carpinteri A., 1997, Fractals and Fractional Calculus in Continuum Mechanics, DOI [10.1007/978-3-7091-2664-6, DOI 10.1007/978-3-7091-2664-6]
[4]   Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative [J].
Celik, Cem ;
Duman, Melda .
JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (04) :1743-1750
[5]   Compact finite difference method for the fractional diffusion equation [J].
Cui, Mingrong .
JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (20) :7792-7804
[6]   High-Order Numerical Algorithms for Riesz Derivatives via Constructing New Generating Functions [J].
Ding, Hengfei ;
Li, Changpin .
JOURNAL OF SCIENTIFIC COMPUTING, 2017, 71 (02) :759-784
[7]   High-order algorithms for Riesz derivative and their applications (II) [J].
Ding, Hengfei ;
Li, Changpin ;
Chen, YangQuan .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 293 :218-237
[8]   High-Order Algorithms for Riesz Derivative and Their Applications (I) [J].
Ding, Hengfei ;
Li, Changpin ;
Chen, YangQuan .
ABSTRACT AND APPLIED ANALYSIS, 2014,
[9]   A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications [J].
Gao, Guang-hua ;
Sun, Zhi-zhong ;
Zhang, Hong-wei .
JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 259 :33-50
[10]   The accuracy and stability of an implicit solution method for the fractional diffusion equation [J].
Langlands, TAM ;
Henry, BI .
JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 205 (02) :719-736