Some new Fourier inequalities for unbounded orthogonal systems in Lorentz-Zygmund spaces

被引:1
作者
Akishev, G. [1 ,2 ]
Lukkassen, D. [3 ]
Persson, L. E. [3 ,4 ]
机构
[1] LN Gumilyov Eurasian Natl Univ, Dept Fundamental Math, Nur Sultan, Kazakhstan
[2] Ural Fed Univ, Inst Math & Comp Sci, Ekaterinburg, Russia
[3] Arctic Univ Norway, Dept Comp Sci & Computat Engn, Campus Narvik, Narvik, Norway
[4] Karlstad Univ Sweden, Dept Math & Comp Sci, Karlstad, Sweden
关键词
Inequalities; Fourier series; Fourier coefficients; Unbounded orthogonal systems; Lorentz-Zygmund spaces; SUMMABILITY;
D O I
10.1186/s13660-020-02344-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove some essential complements of the paper (J. Inequal. Appl. 2019:171, 2019) on the same theme. We prove some new Fourier inequalities in the case of the Lorentz-Zygmund function spaces Lq,r(logL)alpha involved and in the case with an unbounded orthonormal system. More exactly, in this paper we prove and discuss some new Fourier inequalities of this type for the limit case L2,r(logL)alpha, which could not be proved with the techniques used in the paper (J. Inequal. Appl. 2019:171, 2019).
引用
收藏
页数:12
相关论文
共 24 条
[1]   Some Fourier inequalities for orthogonal systems in Lorentz-Zygmund spaces [J].
Akishev, G. ;
Persson, L. E. ;
Seger, A. .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (1)
[2]  
Akishev G., 2013, Math. Zhurnal, V13, P5
[3]  
[Anonymous], IZV ROSS AKAD NAUK M
[4]  
Bochkarev S.V., 1997, Trudy MIRAN-MIRAN treatise, V219, P103
[5]  
Doktorski L.R.Y., 2018, DIVERSITY BEAUTY APP
[6]  
FLETT TM, 1973, J LOND MATH SOC, V7, P376
[7]  
Kirillov S.A., 1999, ACTA SCI MATH, V65, P189
[8]  
Kolyada V.I., 1992, MATH NOTES, V51, P24
[9]  
Kopezhanova A, 2017, THESIS
[10]  
Kopezhanova AN, 2010, EURASIAN MATH J, V1, P76