Cotranscriptional splicing efficiencies differ within genes and between cell types

被引:14
作者
Bedi, Karan [1 ,2 ,3 ,4 ]
Magnuson, Brian [2 ,3 ,4 ]
Narayanan, Ishwarya Venkata [1 ,3 ,4 ]
Paulsen, Michelle T. [1 ,3 ,4 ]
Wilson, Thomas E. [5 ,6 ]
Ljungman, Mats [1 ,3 ,4 ]
机构
[1] Univ Michigan, Dept Radiat Oncol, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Sch Publ Hlth, Dept Biostat, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Rogel Canc Ctr, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Ctr RNA Biomed, Ann Arbor, MI 48109 USA
[5] Univ Michigan, Med Sch, Dept Pathol, Ann Arbor, MI 48109 USA
[6] Univ Michigan, Med Sch, Dept Human Genet, Ann Arbor, MI 48109 USA
关键词
splicing; RNA-binding proteins; cotranscriptional; spliceosome; cell lines; RNA-POLYMERASE-II; MESSENGER-RNA; NASCENT TRANSCRIPTION; SEQ; SPLICEOSOME; PROTEIN; GENOME; ELONGATION; MECHANISMS; SITE;
D O I
10.1261/rna.078662.120
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Pre-mRNA splicing is carried out by the spliceosome and involves splice site recognition, removal of introns, and ligation of exons. Components of the spliceosome have been shown to interact with the elongating RNA polymerase II (RNAPII), which is thought to allow splicing to occur concurrently with transcription. However, little is known about the regulation and efficiency of cotranscriptional splicing in human cells. In this study, we used Bru-seq and BruChase-seq to determine the cotranscriptional splicing efficiencies of 17,000 introns expressed across six human cell lines. We found that less than half of all introns across these six cell lines were cotranscriptionally spliced. Splicing efficiencies for individual introns showed variations across cell lines, suggesting that splicing may be regulated in a cell type-specific manner. Moreover, the splicing efficiency of introns varied within genes. The efficiency of cotranscriptional splicing did not correlate with gene length, intron position, splice site strengths, or the intron/neighboring exons GC content. However, we identified binding signals from multiple RNA-binding proteins (RBPs) that correlated with splicing efficiency, including core spliceosomal machinery components-such as SF3B4, U2AF1, and U2AF2 showing higher binding signals in poorly spliced introns. In addition, multiple RBPs, such as BUD13, PUM1, and SND1, showed preferential binding in exons that flank introns with high splicing efficiencies. The nascent RNA splicing patterns presented here across multiple cell types add to our understanding of the complexity in RNA splicing, wherein RNA-binding proteins may play important roles in determining splicing outcomes in a cell type- and intron-specific manner.
引用
收藏
页码:829 / 840
页数:12
相关论文
共 74 条
[61]   Comprehensive splice-site analysis using comparative genomics [J].
Sheth, Nihar ;
Roca, Xavier ;
Hastings, Michelle L. ;
Roeder, Ted ;
Krainer, Adrian R. ;
Sachidanandam, Ravi .
NUCLEIC ACIDS RESEARCH, 2006, 34 (14) :3955-3967
[62]   Rates of in situ transcription and splicing in large human genes [J].
Singh, Jarnail ;
Padgett, Richard A. .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2009, 16 (11) :1128-U1
[63]   POINT technology illuminates the processing of polymerase-associated intact nascent transcripts [J].
Sousa-Luis, Rui ;
Dujardin, Gwendal ;
Zukher, Inna ;
Kimura, Hiroshi ;
Weldon, Carika ;
Carmo-Fonseca, Maria ;
Proudfoot, Nick J. ;
Nojima, Takayuki .
MOLECULAR CELL, 2021, 81 (09) :1935-+
[64]   A genome-wide analysis indicates that yeast pre-mRNA splicing is predominantly posttranscriptional [J].
Tardiff, Daniel F. ;
Lacadie, Scott A. ;
Rosbash, Michael .
MOLECULAR CELL, 2006, 24 (06) :917-929
[65]   Deep sequencing of subcellular RNA fractions shows splicing to be predominantly co-transcriptional in the human genome but inefficient for IncRNAs [J].
Tilgner, Hagen ;
Knowles, David G. ;
Johnson, Rory ;
Davis, Carrie A. ;
Chakrabortty, Sudipto ;
Djebali, Sarah ;
Curado, Joao ;
Snyder, Michael ;
Gingeras, Thomas R. ;
Guigo, Roderic .
GENOME RESEARCH, 2012, 22 (09) :1616-1625
[66]   Nucleosome positioning as a determinant of exon recognition [J].
Tilgner, Hagen ;
Nikolaou, Christoforos ;
Althammer, Sonja ;
Sammeth, Michael ;
Beato, Miguel ;
Valcarcel, Juan ;
Guigo, Roderic .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2009, 16 (09) :996-U124
[67]   Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation [J].
Trapnell, Cole ;
Williams, Brian A. ;
Pertea, Geo ;
Mortazavi, Ali ;
Kwan, Gordon ;
van Baren, Marijke J. ;
Salzberg, Steven L. ;
Wold, Barbara J. ;
Pachter, Lior .
NATURE BIOTECHNOLOGY, 2010, 28 (05) :511-U174
[68]   Principles of RNA processing from analysis of enhanced CLIP maps for 150 RNA binding proteins [J].
Van Nostrand, Eric L. ;
Pratt, Gabriel A. ;
Yee, Brian A. ;
Wheeler, Emily ;
Blue, Steven M. ;
Mueller, Jasmine ;
Park, Samuel S. ;
Garcia, Keri E. ;
Gelboin-Burkhart, Chelsea ;
Nguyen, Thai B. ;
Rabano, Ines ;
Stanton, Rebecca ;
Sundararaman, Balaji ;
Wang, Ruth ;
Fu, Xiang-Dong ;
Graveley, Brenton R. ;
Yeo, Gene W. .
GENOME BIOLOGY, 2020, 21 (01)
[69]   Rate of elongation by RNA polymerase II is associated with specific gene features and epigenetic modifications [J].
Veloso, Artur ;
Kirkconnell, Killeen S. ;
Magnuson, Brian ;
Biewen, Benjamin ;
Paulsen, Michelle T. ;
Wilson, Thomas E. ;
Ljungman, Mats .
GENOME RESEARCH, 2014, 24 (06) :896-905
[70]   Ultrashort and progressive 4sU-tagging reveals key characteristics of RNA processing at nucleotide resolution [J].
Windhager, Lukas ;
Bonfert, Thomas ;
Burger, Kaspar ;
Ruzsics, Zsolt ;
Krebs, Stefan ;
Kaufmann, Stefanie ;
Malterer, Georg ;
L'Hernault, Anne ;
Schilhabel, Markus ;
Schreiber, Stefan ;
Rosenstiel, Philip ;
Zimmer, Ralf ;
Eick, Dirk ;
Friedel, Caroline C. ;
Doelken, Lars .
GENOME RESEARCH, 2012, 22 (10) :2031-2042