Modeling nonlinear time series with local mixtures of generalized linear models

被引:11
|
作者
Carvalho, AX [1 ]
Tanner, MA
机构
[1] Univ British Columbia, Dept Stat, Vancouver, BC V6T 1Z2, Canada
[2] Northwestern Univ, Dept Stat, Evanston, IL 60208 USA
来源
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE | 2005年 / 33卷 / 01期
关键词
generalized linear models; mixtures-of-experts; nonlinear time series;
D O I
10.1002/cjs.5540330108
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The authors consider a novel class of nonlinear time series models based on local mixtures of regressions of exponential family models, where the covariates include functions of lags of the dependent variable. They give conditions to guarantee consistency of the maximum likelihood estimator for correctly specified models, with stationary and nonstationary predictors. They show that consistency of the maximum likelihood estimator still holds under model misspecification. They also provide probabilistic results for the proposed model when the vector of predictors contains only lags of transformations of the modeled time series. They illustrate the consistency of the maximum likelihood estimator and the probabilistic properties via Monte Carlo simulations. Finally, they present an application using real data.
引用
收藏
页码:97 / 113
页数:17
相关论文
共 50 条
  • [21] Testing parametric versus semiparametric modeling in generalized linear models
    Hardle, W
    Mammen, E
    Muller, M
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1998, 93 (444) : 1461 - 1474
  • [22] Time Series Mixtures of Generalized t Experts: ML Estimation and an Application to Stock Return Density Forecasting
    Carvalho, Alexandre X.
    Skoulakis, Georgios
    ECONOMETRIC REVIEWS, 2010, 29 (5-6) : 642 - 687
  • [23] Generalized Linear Factor Models: A New Local EM Estimation Algorithm
    Saidane, Mohamed
    Bry, Xavier
    Lavergne, Christian
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2013, 42 (16) : 2944 - 2958
  • [24] Historical SAM index time series: linear and nonlinear analysis
    Barrucand, Mariana G.
    Zitto, Miguel E.
    Piotrkowski, Rosa
    Canziani, Pablo
    O'Neill, Alan
    INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2018, 38 : E1091 - E1106
  • [25] Testing for Linear and Nonlinear Gaussian Processes in Nonstationary Time Series
    Rios, Ricardo Araujo
    Small, Michael
    de Mello, Rodrigo Fernandes
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2015, 25 (01):
  • [26] Generalized linear models
    Zezula, Ivan
    BIOMETRIC METHODS AND MODELS IN CURRENT SCIENCE AND RESEARCH, 2011, : 39 - 58
  • [27] Modeling Posidonia oceanica growth data: from linear to generalized linear mixed models
    Lovison, G.
    Sciandra, M.
    Tomasello, A.
    Calvo, S.
    ENVIRONMETRICS, 2011, 22 (03) : 370 - 382
  • [28] Functional-coefficient regression models for nonlinear time series
    Cai, ZW
    Fan, JQ
    Yao, QW
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2000, 95 (451) : 941 - 956
  • [29] Statistical inference for conditional quantiles in nonlinear time series models
    So, Mike K. P.
    Chung, Ray S. W.
    JOURNAL OF ECONOMETRICS, 2015, 189 (02) : 457 - 472
  • [30] Sparse Locally Linear and Neighbor Embedding for Nonlinear Time Series Prediction
    Fakhr, Mohamed Waleed
    2015 TENTH INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING & SYSTEMS (ICCES), 2015, : 371 - 377