Modeling nonlinear time series with local mixtures of generalized linear models

被引:12
作者
Carvalho, AX [1 ]
Tanner, MA
机构
[1] Univ British Columbia, Dept Stat, Vancouver, BC V6T 1Z2, Canada
[2] Northwestern Univ, Dept Stat, Evanston, IL 60208 USA
来源
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE | 2005年 / 33卷 / 01期
关键词
generalized linear models; mixtures-of-experts; nonlinear time series;
D O I
10.1002/cjs.5540330108
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The authors consider a novel class of nonlinear time series models based on local mixtures of regressions of exponential family models, where the covariates include functions of lags of the dependent variable. They give conditions to guarantee consistency of the maximum likelihood estimator for correctly specified models, with stationary and nonstationary predictors. They show that consistency of the maximum likelihood estimator still holds under model misspecification. They also provide probabilistic results for the proposed model when the vector of predictors contains only lags of transformations of the modeled time series. They illustrate the consistency of the maximum likelihood estimator and the probabilistic properties via Monte Carlo simulations. Finally, they present an application using real data.
引用
收藏
页码:97 / 113
页数:17
相关论文
共 46 条
[1]  
Al-Osh M. A., 1987, J TIME SER ANAL, V8, P261, DOI DOI 10.1111/J.1467-9892.1987.TB00438.X
[2]  
[Anonymous], 1996, EM ALGORITHM MIXTURE
[3]  
[Anonymous], 1996, ESTIMATION INFERENCE
[4]  
[Anonymous], 2001, IEEE T INFORM THEORY
[5]  
BIERENS H, 1996, TOPICS ADV EC ESTIMA
[6]  
CARVALHO A, 2002, THESIS NW U
[7]  
CARVALHO A, 2005, IN PRESS STAT PROBAB
[8]  
CARVALHO A, 2004, MODELING NONLINEAR T
[9]   Mixtures-of-experts of autoregressive time series: Asymptotic normality and model specification [J].
Carvalho, AX ;
Tanner, MA .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2005, 16 (01) :39-56
[10]   Penalized minimum-distance estimates in finite mixture models [J].
Chen, JH ;
Kalbfleisch, JD .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1996, 24 (02) :167-175