Au@h-Al2O3 analogic yolk-shell nanocatalyst for highly selective synthesis of biomass-derived d-xylonic acid via regulation of structure effects

被引:36
作者
Ma, Jiliang [1 ]
Liu, Zewei [1 ,2 ]
Song, Junlong [3 ]
Zhong, Linxin [1 ]
Xiao, Dequan [4 ]
Xi, Hongxia [2 ]
Li, Xuehui [2 ]
Sun, Runcang [5 ]
Peng, Xinwen [1 ]
机构
[1] South China Univ Technol, State Key Lab Pulp & Paper Engn, Guangzhou 510641, Guangdong, Peoples R China
[2] South China Univ Technol, Sch Chem & Chem Engn, Guangzhou 510641, Guangdong, Peoples R China
[3] Nanjing Forestry Univ, Jiangsu Coinnovat Ctr Efficient Proc & Utilizat F, Nanjing, Jiangsu, Peoples R China
[4] Univ New Haven, Dept Chem & Chem Engn, Ctr Integrat Mat Discovery, West Haven, CT 06516 USA
[5] Beijing Forestry Univ, Inst Biomass Chem & Utilizat, Beijing, Peoples R China
关键词
NANOPARTICLES; OXIDATION; CATALYST; GLUCOSE; XYLOSE; CONVERSION; REDUCTION; PATHWAY; PURE;
D O I
10.1039/c8gc02618a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Selective oxidation of biomass-based monosaccharides into value-added sugar acids is highly desired, but limited success of producing d-xylonic acid has been achieved. Herein, we report an efficient catalyst system, viz., Au nanoparticles anchored on the inner walls of hollow Al2O3 nanospheres (Au@h-Al2O3), which could catalyze the selective oxidation of d-xylose into d-xylonic acid under base-free conditions. The mesoporous Al2O3 shell as the adsorbent first adsorbed d-xylose. Then, the interface of Au nanoparticles and Al2O3 as active sites spontaneously dissociated O-2, and the exposed Au nanoparticle surface as the catalytic site drove the transformation. With this catalyst system, the valuable d-xylonic acid was produced with excellent yields in the aerobic oxidation of d-xylose. Extensive investigation showed that Au@h-Al2O3 is an efficient catalyst with high stability and recyclability.
引用
收藏
页码:5188 / 5195
页数:8
相关论文
共 48 条
[1]  
[Anonymous], 2017, DASSAULT SYSTEMES BI
[2]   Organic acid production from potato starch waste fermentation by rumen microbial communities from Dutch and Thai dairy cows [J].
Ayudthaya, Susakul Palakawong Na ;
van de Weijer, Antonius H. P. ;
van Gelder, Antonie H. ;
Stams, Alfons J. M. ;
de Vos, Willem M. ;
Plugge, Caroline M. .
BIOTECHNOLOGY FOR BIOFUELS, 2018, 11
[3]   Unusual Metal-Metal Bonding in a Dinuclear Pt-Au Complex: Snapshot of a Transmetalation Process [J].
Baya, Miguel ;
Belio, Ursula ;
Fernandez, Israel ;
Fuertes, Sara ;
Martin, Antonio .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (24) :6978-6982
[4]   Selective oxidation of D-glucose on gold catalyst [J].
Biella, S ;
Prati, L ;
Rossi, M .
JOURNAL OF CATALYSIS, 2002, 206 (02) :242-247
[5]   Core-Shell Structuring of Pure Metallic Aerogels towards Highly Efficient Platinum Utilization for the Oxygen Reduction Reaction [J].
Cai, Bin ;
Huebner, Rene ;
Sasaki, Kotaro ;
Zhang, Yuanzhe ;
Su, Dong ;
Ziegler, Christoph ;
Vukmirovic, Miomir B. ;
Rellinghaus, Bernd ;
Adzic, Radoslav R. ;
Eychmueller, Alexander .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (11) :2963-2966
[6]   Direct Au-Ni/Al2O3 catalysed cross-condensation of ethanol with isopropanol into pentanol-2 [J].
Chistyakov, A. V. ;
Zharova, P. A. ;
Nikolaev, S. A. ;
Tsodikov, M. V. .
CATALYSIS TODAY, 2017, 279 :124-132
[7]   The development of cement and concrete additive [J].
Chun, Byong-Wa ;
Dair, Benita ;
Macuch, Patrick J. ;
Wiebe, Debbie ;
Porteneuve, Charlotte ;
Jeknavorian, Ara .
APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2006, 131 (1-3) :645-658
[8]   Aerobic oxidation of glucose with gold catalyst: Hydrogen peroxide as intermediate and reagent [J].
Comotti, M ;
Della Pina, C ;
Falletta, E ;
Rossi, M .
ADVANCED SYNTHESIS & CATALYSIS, 2006, 348 (03) :313-316
[9]  
DAHMS AS, 1974, BIOCHEM BIOPH RES CO, V60, P1433
[10]   Hydrothermal Cation Exchange Enabled Gradual Evolution of Au@ZnS-AgAuS Yolk-Shell Nanocrystals and Their Visible Light Photocatalytic Applications [J].
Feng, Jingwen ;
Liu, Jia ;
Cheng, Xiaoyan ;
Liu, Jiajia ;
Xu, Meng ;
Zhang, Jiatao .
ADVANCED SCIENCE, 2018, 5 (01)