Singular solutions of parabolic p-Laplacian with absorption

被引:12
作者
Chen, Xinfu [1 ]
Qi, Yuanwei
Wang, Mingxin
机构
[1] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
[2] Univ Cent Florida, Dept Math, Orlando, FL 32816 USA
[3] SE Univ, Dept Appl Math, Nanjing 210018, Peoples R China
关键词
p-Laplacian; fast diffusion; absorption; fundamental solution; very singular solution;
D O I
10.1090/S0002-9947-07-04336-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider, for p is an element of (1, 2) and q > 1, the p-Laplacian evolution equation with absorption u(t) = div(|del(u)|(p-2)del u)-u(q) in R-n x (0,infinity). We are interested in those solutions, which we call singular solutions, that are non- negative, non- trivial, continuous in R-n x [0, infinity) \ {(0, 0)}, and satisfy u(x, 0) = 0 for all x not equal 0. We prove the following: (i) When q >= p - 1 + p/n, there does not exist any such singular solution. (ii) When q < p - 1 + p/n, there exists, for every c > 0, a unique singular solution u = u(c) that satisfies integral R-n u(., t). c as t SE arrow 0. Also, uc NE arrow u(infinity) as c NE arrow 8, where u(infinity) is a singular solution that satisfies integral R-n u(infinity)(., t) -> infinity as t SE arrow 0. Furthermore, any singular solution is either u(infinity) or u(c) for some finite positive c.
引用
收藏
页码:5653 / 5668
页数:16
相关论文
共 24 条
[1]  
BREZIS H, 1983, J MATH PURE APPL, V62, P73
[2]  
BREZIS H, 1985, ARCH RATIONAL MECH A, V96, P185
[3]   Self-similar singular solutions of a p-Laplacian evolution equation with absorption [J].
Chen, XF ;
Qi, YW ;
Wang, MX .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 190 (01) :1-15
[4]  
DIAZ JI, 1992, PUBL MAT, V36, P19
[5]  
Dibenedetto E, 1993, DEGENERATE PARABOLIC, DOI DOI 10.1007/978-1-4612-0895-2
[6]   LARGE TIME BEHAVIOR OF SOLUTIONS OF A DISSIPATIVE SEMILINEAR HEAT-EQUATION [J].
ESCOBEDO, M ;
KAVIAN, O ;
MATANO, H .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1995, 20 (7-8) :1427-1452
[7]  
GALAKTIONOV VA, 1986, MATH USSR SB, V54, P421
[8]   SOURCE-TYPE SOLUTIONS OF DEGENERATE DIFFUSION-EQUATIONS WITH ABSORPTION [J].
KAMIN, S ;
PELETIER, LA .
ISRAEL JOURNAL OF MATHEMATICS, 1985, 50 (03) :219-230
[9]   EXISTENCE AND UNIQUENESS OF THE VERY SINGULAR SOLUTION OF THE POROUS-MEDIA EQUATION WITH ABSORPTION [J].
KAMIN, S ;
VERON, L .
JOURNAL D ANALYSE MATHEMATIQUE, 1988, 51 :245-258
[10]   SINGULAR SOLUTIONS OF SOME NONLINEAR PARABOLIC EQUATIONS [J].
KAMIN, S ;
VAZQUEZ, JL .
JOURNAL D ANALYSE MATHEMATIQUE, 1992, 59 :51-74