Single-exponential bounds for the smallest singular value of Vandermonde matrices in the sub-Rayleigh regime

被引:5
作者
Batenkov, Dmitry [1 ]
Goldman, Gil [2 ]
机构
[1] Tel Aviv Univ, Sch Math Sci, Dept Appl Math, POB 39040, IL-6997801 Tel Aviv, Israel
[2] Weizmann Inst Sci, Dept Math, IL-76100 Rehovot, Israel
关键词
Vandermonde matrices with nodes on the unit circle; Nonuniform Fourier matrices; Sub-Rayleigh resolution; Singular values; Super-resolution; Condition number; SUPERRESOLUTION LIMIT; INEQUALITIES;
D O I
10.1016/j.acha.2021.07.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Following recent interest by the community, the scaling of the minimal singular value of a Vandermonde matrix with nodes forming clusters on the length scale of Rayleigh distance on the complex unit circle is studied. Using approximation theoretic properties of exponential sums, we show that the decay is only single exponential in the size of the largest cluster, and the bound holds for arbitrary small minimal separation distance. We also obtain a generalization of well-known bounds on the smallest eigenvalue of the generalized prolate matrix in the multi -cluster geometry. Finally, the results are extended to the entire spectrum. (c) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:426 / 439
页数:14
相关论文
共 30 条
  • [1] [Anonymous], 1994, St. Petersburg Math. J
  • [2] Vandermonde matrices with nodes in the unit disk and the large sieve
    Aubel, Celine
    Bolcskei, Helmut
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2019, 47 (01) : 53 - 86
  • [3] Auton J., 1981, INVESTIGATION PROCED
  • [4] Barnett Alex H., 2020, ARXIV200409643
  • [5] Super-resolution of near-colliding point sources
    Batenkov, Dmitry
    Goldman, Gil
    Yomdin, Yosef
    [J]. INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2021, 10 (02) : 515 - 572
  • [6] The spectral properties of Vandermonde matrices with clustered nodes
    Batenkov, Dmitry
    Diederichs, Benedikt
    Goldman, Gil
    Yomdi, Yosef
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 609 : 37 - 72
  • [7] CONDITIONING OF PARTIAL NONUNIFORM FOURIER MATRICES WITH CLUSTERED NODES
    Batenkov, Dmitry
    Demanet, Laurent
    Goldman, Gil
    Yomdin, Yosef
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2020, 41 (01) : 199 - 220
  • [8] Super-Resolution from Noisy Data
    Candes, Emmanuel J.
    Fernandez-Granda, Carlos
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2013, 19 (06) : 1229 - 1254
  • [9] Towards a Mathematical Theory of Super- resolution
    Candes, Emmanuel J.
    Fernandez-Granda, Carlos
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2014, 67 (06) : 906 - 956
  • [10] Clair Gaspard, 1795, Journal Ecole Polytechnique, V1, P24