共 50 条
Quantitative Imaging of Glutathione in Live Cells Using a Reversible Reaction-Based Ratiometric Fluorescent Probe
被引:156
|作者:
Jiang, Xiqian
[1
]
Yu, Yong
[2
,3
]
Chen, Jianwei
[1
]
Zhao, Mingkun
[1
,4
]
Chen, Hui
[1
]
Song, Xianzhou
[1
]
Matzuk, Alexander J.
[1
]
Carroll, Shaina L.
[1
]
Tan, Xiao
[1
]
Sizovs, Antons
[1
]
Cheng, Ninghui
[5
,6
]
Wang, Meng C.
[2
,3
]
Wang, Jin
[1
,7
,8
]
机构:
[1] Baylor Coll Med, Dept Pharmacol, Houston, TX 77030 USA
[2] Baylor Coll Med, Dept Mol & Human Genet, Houston, TX 77030 USA
[3] Baylor Coll Med, Huffington Ctr Aging, Houston, TX 77030 USA
[4] Baylor Coll Med, Integrat Mol & Biomed Sci Grad Program, Houston, TX 77030 USA
[5] Baylor Coll Med, ARS, USDA, Children Nutr Res Ctr, Houston, TX 77030 USA
[6] Baylor Coll Med, Dept Pediat, Houston, TX 77030 USA
[7] Baylor Coll Med, Dan L Duncan Canc Ctr, Ctr Drug Discovery, Houston, TX 77030 USA
[8] Baylor Coll Med, Cardiovasc Res Inst, Houston, TX 77030 USA
关键词:
HIGHLY SELECTIVE DETECTION;
HYDROGEN-SULFIDE;
REDOX;
THIOLS;
QUANTIFICATION;
MITOCHONDRIA;
LUMINESCENT;
METABOLITES;
INDUCTION;
PROTEINS;
D O I:
10.1021/cb500986w
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
Glutathione (GSH) plays an important role in maintaining redox homeostasis inside cells. Currently, there are no methods available to quantitatively assess the GSH concentration in live cells. Live cell fluorescence imaging revolutionized the field of cell biology and has become an indispensable tool in current biological studies. In order to minimize the disturbance to the biological system in live cell imaging, the probe concentration needs to be significantly lower than the analyte concentration. Because of this, any irreversible reaction-based GSH probe can only provide qualitative results within a short reaction time and will exhibit maximum response regardless of the GSH concentration if the reaction is completed. A reversible reaction-based probe with an appropriate equilibrium constant allows measurement of an analyte at much higher concentrations and, thus, is a prerequisite for GSH quantification inside cells. In this contribution, we report the first fluorescent probe-ThiolQuant Green (TQ Green)-for quantitative imaging of GSH in live cells. Due to the reversible nature of the reaction between the probe and GSH, we are able to quantify mM concentrations of GSH with TQ Green concentrations as low as 20 nM. Furthermore, the GSH concentrations measured using TQ Green in 3T3-L1, HeLa, HepG2, PANC-1, and PANC-28 cells are reproducible and well correlated with the values obtained from cell lysates. TQ Green imaging can also resolve the changes in GSH concentration in PANC-1 cells upon diethylmaleate (DEM) treatment. In addition, TQ Green can be conveniently applied in fluorescence activated cell sorting (FACS) to measure GSH level changes. Through this study, we not only demonstrate the importance of reaction reversibility in designing quantitative reaction-based fluorescent probes but also provide a practical tool to facilitate redox biology studies.
引用
收藏
页码:864 / 874
页数:11
相关论文