On the Maxwell-Stefan Equations for Multi-component Diffusion

被引:0
|
作者
Verros, George D. [1 ]
Giovannopoulos, Fotios [2 ]
机构
[1] Technol & Educ Inst Lamia, Dept Elect Engn, Lamia 35100, Greece
[2] Univ Gottingen, Math Inst, D-37073 Gottingen, Germany
关键词
diffusion in gases; diffusion in liquids; education; ONSAGER RECIPROCAL RELATIONS; IRREVERSIBLE-PROCESSES; TRANSPORT PROCESSES; COEFFICIENTS; SYSTEMS; THERMODYNAMICS; VALIDITY;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this work the various physical theories for multi-component diffusion are critically reviewed by re-examining the underlying relations between these frameworks. The Maxwell-Stefan equations for multi-component diffusion are re-derived by using sound principles of non-equilibrium thermodynamics. It is believed that this work could be used for pedagogical purposes.
引用
收藏
页码:262 / +
页数:2
相关论文
共 50 条
  • [1] The algorithm for determination of Maxwell-Stefan diffusion coefficients in multi-component mixtures of dense gases
    Tabis, Boleslaw
    PRZEMYSL CHEMICZNY, 2018, 97 (01): : 132 - 135
  • [2] An approach combining the lattice Boltzmann method and Maxwell-Stefan equation for modeling multi-component diffusion
    Huang, Ju'an
    Li, Zhiyuan
    Li, Na
    Bao, Cheng
    Feng, Daili
    Jiang, Zeyi
    Zhang, Xinxin
    PHYSICS OF FLUIDS, 2021, 33 (08)
  • [3] Maxwell-Stefan Equations Applied to the Modeling of Multi-Component Permeation through a Silicalite-1 Membrane
    Xu, Chunhui
    Chen, Yunchao
    Peng, Anna
    Wang, Ningwei
    Shang, Hao
    Zhong, Yijun
    Zhu, Weidong
    ADVANCES IN CHEMICAL ENGINEERING, PTS 1-3, 2012, 396-398 : 674 - 679
  • [4] The simulation of mass transfer processes of multi-component systems by Maxwell-Stefan model
    Gu, Wei
    Zhang, Hu
    Li, Zeng-Yao
    Tao, Wen-Quan
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2012, 33 (04): : 681 - 684
  • [5] The Fick and Lagrange equations as a basis for the Maxwell-Stefan diffusion equations
    Mitrovic, J
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1997, 40 (10) : 2373 - 2377
  • [6] A MATHEMATICAL AND NUMERICAL ANALYSIS OF THE MAXWELL-STEFAN DIFFUSION EQUATIONS
    Boudin, Laurent
    Grec, Berenice
    Salvarani, Francesco
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2012, 17 (05): : 1427 - 1440
  • [7] Negative Maxwell-Stefan diffusion coefficients
    Kraaijeveld, Gerrit
    Wesselingh, Johannes A.
    Industrial and Engineering Chemistry Research, 1993, 32 (04): : 738 - 742
  • [8] The Maxwell-Stefan description of binary diffusion
    Bringuier, E.
    EUROPEAN JOURNAL OF PHYSICS, 2013, 34 (05) : 1103 - 1126
  • [9] The Maxwell-Stefan formulation of diffusion in zeolites
    Krishna, R.
    Fluid Transport in Nanoporous Materials, 2006, 219 : 211 - 240
  • [10] The Maxwell-Stefan equations for diffusion in multiphase systems with intersecting dividing surfaces
    Sagis, LMC
    PHYSICA A, 1998, 254 (3-4): : 365 - 376