Schwarz-Christoffel mapping of multiply connected domains

被引:47
作者
DeLillo, TK [1 ]
Elcrat, AR
Pfaltzgraff, JA
机构
[1] Wichita State Univ, Dept Math & Stat, Wichita, KS 67260 USA
[2] Univ N Carolina, Dept Math, Chapel Hill, NC 27599 USA
来源
JOURNAL D ANALYSE MATHEMATIQUE | 2004年 / 94卷 / 1期
关键词
D O I
10.1007/BF02789040
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Schwarz-Christoffel mapping formula is established for polygonal domains of finite connectivity m >= 2 thereby extending the results of Christoffel (1867) and Schwarz (1869) for m = 1 and Komatu (1945), m = 2. A formula for f, the conformal map of the exterior of m, bounded disks to the exterior of m bounded disjoint polygons, is derived. The derivation characterizes the global preSchwarzian f" (z) /f' (z) on the Riemann sphere in terms of its singularities on the sphere and its values on the m boundary circles via the reflection principle and then identifies a singularity function with the same boundary behavior. The singularity function is constructed by a "method of images" infinite sequence of iterations of reflecting prevertex singularities from the m boundary circles to the whole sphere.
引用
收藏
页码:17 / 47
页数:31
相关论文
共 16 条
[1]  
[Anonymous], JPN J MATH
[2]  
[Anonymous], 2002, SCHWARZ CHRISTOFFEL
[3]   A method of images for the evaluation of electrostatic fields in systems of closely spaced conducting cylinders [J].
Cheng, HW ;
Greengard, L .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1998, 58 (01) :122-141
[4]  
DAEPPEN H, 1988, THESIS ETH ZURICH
[5]   Schwarz-Christoffel mapping of the annulus [J].
DeLillo, TK ;
Elcrat, AR ;
Pfaltzgraff, JA .
SIAM REVIEW, 2001, 43 (03) :469-477
[6]   Numerical conformal mapping of multiply connected regions by Fornberg-like methods [J].
DeLillo, TK ;
Horn, MA ;
Pfaltzgraff, JA .
NUMERISCHE MATHEMATIK, 1999, 83 (02) :205-230
[7]  
DRISCOLL T, 1998, P INT C MATH ROS GER
[8]   Green's functions for multiply connected domains via conformal mapping [J].
Embree, M ;
Trefethen, LN .
SIAM REVIEW, 1999, 41 (04) :745-761
[9]  
Goluzin G. M., 1966, Geometric Theory of Functions of Complex Variable
[10]  
Henrici P., 1986, Applied and Computational Complex Analysis, V3