Estimation of covariance matrix via the sparse Cholesky factor with lasso

被引:27
作者
Chang, Changgee [2 ]
Tsay, Ruey S. [1 ]
机构
[1] Univ Chicago, Booth Sch Business, Chicago, IL 60637 USA
[2] Univ Chicago, Dept Stat, Chicago, IL 60637 USA
关键词
Adding and removing variables; Covariance matrix estimation; Equi-angular covariance estimate; Dynamic weighted lasso; L-1; penalty; Lasso; Updating; Modified Cholesky decomposition; LONGITUDINAL DATA; NONPARAMETRIC-ESTIMATION; VARIABLE SELECTION; ORACLE PROPERTIES; MODELS; LIKELIHOOD; REGRESSION;
D O I
10.1016/j.jspi.2010.04.048
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we discuss a parsimonious approach to estimation of high-dimensional covariance matrices via the modified Cholesky decomposition with lasso. Two different methods are proposed. They are the equi-angular and equi-sparse methods. We use simulation to compare the performance of the proposed methods with others available in the literature, including the sample covariance matrix, the banding method, and the Li-penalized normal loglikelihood method. We then apply the proposed methods to a portfolio selection problem using 80 series of daily stock returns. To facilitate the use of lasso in high-dimensional time series analysis, we develop the dynamic weighted lasso (DWL) algorithm that extends the LARS-lasso algorithm. In particular, the proposed algorithm can efficiently update the lasso solution as new data become available. It can also add or remove explanatory variables. The entire solution path of the L-1-penalized normal loglikelihood method is also constructed. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:3858 / 3873
页数:16
相关论文
共 23 条
  • [1] [Anonymous], 2005, ANAL FINANCIAL TIME, DOI DOI 10.1002/0471746193
  • [2] Regularized estimation of large covariance matrices
    Bickel, Peter J.
    Levina, Elizaveta
    [J]. ANNALS OF STATISTICS, 2008, 36 (01) : 199 - 227
  • [3] COVARIANCE REGULARIZATION BY THRESHOLDING
    Bickel, Peter J.
    Levina, Elizaveta
    [J]. ANNALS OF STATISTICS, 2008, 36 (06) : 2577 - 2604
  • [4] Spectral models for covariance matrices
    Boik, RJ
    [J]. BIOMETRIKA, 2002, 89 (01) : 159 - 182
  • [5] The matrix logarithmic covariance model
    Chiu, TYM
    Leonard, T
    Tsui, KW
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1996, 91 (433) : 198 - 210
  • [6] First-order methods for sparse covariance selection
    D'Aspremont, Alexandre
    Banerjee, Onureena
    El Ghaoui, Laurent
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2008, 30 (01) : 56 - 66
  • [7] COVARIANCE SELECTION
    DEMPSTER, AP
    [J]. BIOMETRICS, 1972, 28 (01) : 157 - &
  • [8] Nonparametric estimation of covariance structure in longitudinal data
    Diggle, PJ
    Verbyla, AP
    [J]. BIOMETRICS, 1998, 54 (02) : 401 - 415
  • [9] Least angle regression - Rejoinder
    Efron, B
    Hastie, T
    Johnstone, I
    Tibshirani, R
    [J]. ANNALS OF STATISTICS, 2004, 32 (02) : 494 - 499
  • [10] Variable selection via nonconcave penalized likelihood and its oracle properties
    Fan, JQ
    Li, RZ
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (456) : 1348 - 1360