Unsupervised Learning Strategy for Direction-of-Arrival Estimation Network

被引:19
|
作者
Yuan, Ye [1 ]
Wu, Shuang [1 ]
Wu, Minjie [2 ]
Yuan, Naichang [1 ]
机构
[1] Natl Univ Def Technol, State Key Lab Complex Electromagnet Environm Elec, Changsha 410073, Peoples R China
[2] 92728 Troops, Shanghai 200000, Peoples R China
关键词
Artificial intelligent; deep neural network; direction-of-arrival estimation; unsupervised learning; DOA ESTIMATION; NEURAL-NETWORK; NESTED ARRAYS; DIMENSIONS; SPARSE;
D O I
10.1109/LSP.2021.3096117
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this letter, we proposed a novel unsupervised learning strategy for direction-of-arrival (DOA) estimation network. Inspired by the sparse power spectrum and l(1)-norm optimization, we develop a novel loss function to cooperate with the estimation network. Unlike the prior DL-based methods, the proposed method does not need any manual annotations for training and validation datasets. Compared with state-of-art methods, the proposed method can automatically increase the degree of freedom of the array without further pre-processing on the covariance matrix of array observation data. Moreover, the proposed method can obtain clear spectrum and precise DOAs under harsh estimation environments.
引用
收藏
页码:1450 / 1454
页数:5
相关论文
共 50 条
  • [41] Generalized Nested Array Configuration Family for Direction-of-Arrival Estimation
    Zhao, Pinjiao
    Wu, Qisong
    Chen, Zhengyu
    Hu, Guobing
    Wang, Liwei
    Wan, Liangtian
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (08) : 10380 - 10392
  • [42] Direction-Of-Arrival Estimation Using AMLSS Method
    Atashbar, M.
    Kahaei, M. H.
    IEEE LATIN AMERICA TRANSACTIONS, 2012, 10 (05) : 2053 - 2058
  • [43] Residual Neural Network for Direction-of-Arrival Estimation of Multiple Targets in Low SNR
    Qin, Yanhua
    IET SIGNAL PROCESSING, 2024, 2024
  • [44] Direction-of-Arrival Estimation via Sparse Bayesian Learning Exploiting Hierarchical Priors with Low Complexity
    Li, Ninghui
    Zhang, Xiaokuan
    Lv, Fan
    Zong, Binfeng
    SENSORS, 2024, 24 (07)
  • [45] Ensemble Learning Approach With Class Rotation for Three-Dimensional Classification on Direction-of-Arrival Estimation
    Mendoza-Velazquez, Israel
    Perez-Meana, Hector
    Haneda, Yoichi
    IEEE ACCESS, 2022, 10 : 108185 - 108193
  • [46] Vehicle Positioning With Deep-Learning-Based Direction-of-Arrival Estimation of Incoherently Distributed Sources
    Tian, Ye
    Liu, Shuai
    Liu, Wei
    Chen, Hua
    Dong, Zhiyan
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (20): : 20083 - 20095
  • [47] Sparse Bayesian Learning Approach for Outlier-Resistant Direction-of-Arrival Estimation
    Dai, Jisheng
    So, Hing Cheung
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (03) : 744 - 756
  • [48] A novel direction-of-arrival estimation method for wideband signals
    Liu, Chunjing
    Liu, Feng
    Zhang, Shu
    SIGNAL IMAGE AND VIDEO PROCESSING, 2012, 6 (01) : 141 - 145
  • [49] DIRECTION-OF-ARRIVAL ESTIMATION USING SIGNAL PROCESSING ON GRAPHS
    Alcantara, Eldridge
    Atlas, Les
    Abadi, Shima
    2021 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2021, : 566 - 570
  • [50] Direction-of-Arrival Estimation with Coarray ESPRIT for Coprime Array
    Zhou, Chengwei
    Zhou, Jinfang
    SENSORS, 2017, 17 (08):