Unsupervised Learning Strategy for Direction-of-Arrival Estimation Network

被引:18
|
作者
Yuan, Ye [1 ]
Wu, Shuang [1 ]
Wu, Minjie [2 ]
Yuan, Naichang [1 ]
机构
[1] Natl Univ Def Technol, State Key Lab Complex Electromagnet Environm Elec, Changsha 410073, Peoples R China
[2] 92728 Troops, Shanghai 200000, Peoples R China
关键词
Artificial intelligent; deep neural network; direction-of-arrival estimation; unsupervised learning; DOA ESTIMATION; NEURAL-NETWORK; NESTED ARRAYS; DIMENSIONS; SPARSE;
D O I
10.1109/LSP.2021.3096117
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this letter, we proposed a novel unsupervised learning strategy for direction-of-arrival (DOA) estimation network. Inspired by the sparse power spectrum and l(1)-norm optimization, we develop a novel loss function to cooperate with the estimation network. Unlike the prior DL-based methods, the proposed method does not need any manual annotations for training and validation datasets. Compared with state-of-art methods, the proposed method can automatically increase the degree of freedom of the array without further pre-processing on the covariance matrix of array observation data. Moreover, the proposed method can obtain clear spectrum and precise DOAs under harsh estimation environments.
引用
收藏
页码:1450 / 1454
页数:5
相关论文
共 50 条
  • [31] A new nested array for direction-of-arrival estimation
    Zhenghan Li
    Huiping Huang
    Bin Liao
    Multidimensional Systems and Signal Processing, 2020, 31 : 663 - 672
  • [32] Direction-of-Arrival Estimation Based on Joint Sparsity
    Wang, Junhua
    Huang, Zhitao
    Zhou, Yiyu
    SENSORS, 2011, 11 (09) : 9098 - 9108
  • [33] Compressive Direction-of-Arrival Estimation Off the Grid
    Hamzehei, Shermin
    Duarte, Marco F.
    2016 50TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, 2016, : 1081 - 1085
  • [34] Direction-of-arrival estimation for constant modulus signals
    Leshem, A
    van der Veen, AJ
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1999, 47 (11) : 3125 - 3129
  • [35] l0 Norm Constraint Bayesian Strategy for Direction-of-Arrival Estimation
    Liang, Guolong
    Li, Chenmu
    Qiu, Longhao
    Zou, Nan
    Shen, Tongsheng
    Fu, Jin
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2022, 41 (07) : 4028 - 4040
  • [36] Direction-of-arrival estimation using separated subarrays
    Athley, F
    Engdahl, C
    CONFERENCE RECORD OF THE THIRTY-FOURTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, 2000, : 585 - 589
  • [37] Accurate Direction-of-Arrival Estimation for Coherent Signals
    Jiang, Jiajia
    Duan, Fajie
    Li, Yanchao
    2014 10TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION (ICNC), 2014, : 888 - 892
  • [38] Decentralized Online Direction-of-Arrival Estimation and Tracking
    Fan, Yufan
    Ardic, Cemil Emre
    Minh Trinh-Hoang
    Pesavento, Marius
    2022 IEEE 12TH SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP (SAM), 2022, : 6 - 10
  • [39] Direction-of-arrival estimation for uncorrelated FM signals
    Cirillo, LA
    Zoubir, AM
    Gershman, AB
    SAM2002: IEEE SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP PROCEEDINGS, 2002, : 318 - 322
  • [40] Fast Direction-of-Arrival Estimation in Coprime Arrays
    Baxter, William
    Aboutanios, Elias
    2018 INTERNATIONAL CONFERENCE ON RADAR (RADAR), 2018,