Unsupervised Learning Strategy for Direction-of-Arrival Estimation Network

被引:19
|
作者
Yuan, Ye [1 ]
Wu, Shuang [1 ]
Wu, Minjie [2 ]
Yuan, Naichang [1 ]
机构
[1] Natl Univ Def Technol, State Key Lab Complex Electromagnet Environm Elec, Changsha 410073, Peoples R China
[2] 92728 Troops, Shanghai 200000, Peoples R China
关键词
Artificial intelligent; deep neural network; direction-of-arrival estimation; unsupervised learning; DOA ESTIMATION; NEURAL-NETWORK; NESTED ARRAYS; DIMENSIONS; SPARSE;
D O I
10.1109/LSP.2021.3096117
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this letter, we proposed a novel unsupervised learning strategy for direction-of-arrival (DOA) estimation network. Inspired by the sparse power spectrum and l(1)-norm optimization, we develop a novel loss function to cooperate with the estimation network. Unlike the prior DL-based methods, the proposed method does not need any manual annotations for training and validation datasets. Compared with state-of-art methods, the proposed method can automatically increase the degree of freedom of the array without further pre-processing on the covariance matrix of array observation data. Moreover, the proposed method can obtain clear spectrum and precise DOAs under harsh estimation environments.
引用
收藏
页码:1450 / 1454
页数:5
相关论文
共 50 条
  • [1] Enhancing Direction-of-Arrival Estimation with Multi-Task Learning
    Bianco, Simone
    Celona, Luigi
    Crotti, Paolo
    Napoletano, Paolo
    Petraglia, Giovanni
    Vinetti, Pietro
    SENSORS, 2024, 24 (22)
  • [2] Coarray Tensor Direction-of-Arrival Estimation
    Zheng, Hang
    Zhou, Chengwei
    Shi, Zhiguo
    Gu, Yujie
    Zhang, Yimin D.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2023, 71 : 1128 - 1142
  • [3] Coherent SVR Learning for Wideband Direction-of-Arrival Estimation
    Wu, Liu-Li
    Huang, Zhi-Tao
    IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (04) : 642 - 646
  • [4] A Deep Shrinkage Network for Direction-of-Arrival Estimation with Sparse Prior
    Zhou, Lei
    Zhou, Shihong
    Qi, Yubo
    Wu, Lixin
    Benezeth, Yannick
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2025, 13 (02)
  • [5] A modular neural network for direction-of-arrival estimation of two sources
    Ofek, Gal
    Tabrikian, Joseph
    Aladjem, Mayer
    NEUROCOMPUTING, 2011, 74 (17) : 3092 - 3102
  • [6] Cascaded Deep Neural Network for Off-Grid Direction-of-Arrival Estimation∗ ∗
    Wang, Huafei
    Wang, Xianpeng
    Lan, Xiang
    Su, Ting
    IEICE TRANSACTIONS ON COMMUNICATIONS, 2024, E107B (10) : 633 - 644
  • [7] Deep Convolutional Network-Assisted Multiple Direction-of-Arrival Estimation
    Ma, Jie
    Wang, Min
    Chen, Yiyi
    Wang, Haiming
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 576 - 580
  • [8] l0 Norm Constraint Bayesian Strategy for Direction-of-Arrival Estimation
    Liang, Guolong
    Li, Chenmu
    Qiu, Longhao
    Zou, Nan
    Shen, Tongsheng
    Fu, Jin
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2022, 41 (07) : 4028 - 4040
  • [9] A new nested array for direction-of-arrival estimation
    Li, Zhenghan
    Huang, Huiping
    Liao, Bin
    MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2020, 31 (02) : 663 - 672
  • [10] COFFEE: Covariance Fitting and Focusing for Wideband Direction-of-Arrival Estimation
    Wu, Xunmeng
    Yang, Zai
    Wei, Zhiqiang
    Schober, Robert
    Xu, Zongben
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2024, 72 : 5659 - 5674