Enhanced laser-driven proton acceleration using nanowire targets

被引:18
作者
Vallieres, S. [1 ,2 ]
Salvadori, M. [1 ,3 ,4 ]
Permogorov, A. [5 ]
Cantono, G. [5 ]
Svendsen, K. [5 ]
Chen, Z. [1 ]
Sun, S. [1 ]
Consoli, F. [3 ]
d'Humieres, E. [2 ]
Wahlstrom, C-G [5 ]
Antici, P. [1 ]
机构
[1] INRS EMT, 1650 Blvd Lionel Boulet, Varennes, PQ J3X 1P7, Canada
[2] Univ Bordeaux, CELIA, 351 Cours Liberat, F-33400 Talence, France
[3] Natl Agcy New Technol Energy & Sustainable Econ D, Via Enrico Fermi 45, I-00044 Rome, Italy
[4] Univ Roma La Sapienza, P Aldo Moro 5, I-00185 Rome, Italy
[5] Lund Univ, Dept Phys, S-22100 Lund, Sweden
基金
瑞典研究理事会; 加拿大创新基金会; 加拿大自然科学与工程研究理事会; 欧盟地平线“2020”;
关键词
INTENSE; RADIATION; DIAMOND; PLASMAS;
D O I
10.1038/s41598-020-80392-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Laser-driven proton acceleration is a growing field of interest in the high-power laser community. One of the big challenges related to the most routinely used laser-driven ion acceleration mechanism, Target-Normal Sheath Acceleration (TNSA), is to enhance the laser-to-proton energy transfer such as to maximize the proton kinetic energy and number. A way to achieve this is using nanostructured target surfaces in the laser-matter interaction. In this paper, we show that nanowire structures can increase the maximum proton energy by a factor of two, triple the proton temperature and boost the proton numbers, in a campaign performed on the ultra-high contrast 10 TW laser at the Lund Laser Center (LLC). The optimal nanowire length, generating maximum proton energies around 6 MeV, is around 1-2 mu m. This nanowire length is sufficient to form well-defined highly-absorptive NW forests and short enough to minimize the energy loss of hot electrons going through the target bulk. Results are further supported by Particle-In-Cell simulations. Systematically analyzing nanowire length, diameter and gap size, we examine the underlying physical mechanisms that are provoking the enhancement of the longitudinal accelerating electric field. The parameter scan analysis shows that optimizing the spatial gap between the nanowires leads to larger enhancement than by the nanowire diameter and length, through increased electron heating.
引用
收藏
页数:11
相关论文
共 50 条
[21]   Electron heating in radiation-pressure-driven proton acceleration with a circularly polarized laser [J].
Paradkar, B. S. ;
Krishnagopal, S. .
PHYSICAL REVIEW E, 2016, 93 (02)
[22]   Self-injected petawatt laser-driven plasma electron acceleration in 1017 cm-3 plasma [J].
Wang, X. ;
Zgadzaj, R. ;
Yi, S. A. ;
Khudik, V. ;
Henderson, W. ;
Fazel, N. ;
Chang, Y-Y ;
Korzekwa, R. ;
Tsai, H-E. ;
Pai, C-H. ;
Li, Z. ;
Gaul, E. ;
Martinez, M. ;
Dyer, G. ;
Quevedo, H. ;
Bernstein, A. ;
Donovan, M. ;
Shvets, G. ;
Ditmire, T. ;
Downer, M. C. .
JOURNAL OF PLASMA PHYSICS, 2012, 78 :413-419
[23]   Ultrabroadband Nanospectroscopy with a Laser-Driven Plasma Source [J].
Wagner, Martin ;
Jakob, Devon S. ;
Horne, Steve ;
Mittel, Henry ;
Osechinskiy, Sergey ;
Phillips, Cassandra ;
Walker, Gilbert C. ;
Su, Chanmin ;
Xu, Xiaoji G. .
ACS PHOTONICS, 2018, 5 (04) :1467-1475
[24]   Acceleration of Protons to Above 6 MeV using H2O "Snow" Nanowire Targets [J].
Pomerantz, I. ;
Schleifer, E. ;
Nahum, E. ;
Eisenmann, S. ;
Botton, M. ;
Gordon, D. ;
Sprangel, P. ;
Zigler, A. .
LIGHT AT EXTREME INTENSITIES 2011, 2012, 1462 :159-164
[25]   Laser-Driven Ultrafast Field Propagation on Solid Surfaces [J].
Quinn, K. ;
Wilson, P. A. ;
Cecchetti, C. A. ;
Ramakrishna, B. ;
Romagnani, L. ;
Sarri, G. ;
Lancia, L. ;
Fuchs, J. ;
Pipahl, A. ;
Toncian, T. ;
Willi, O. ;
Clarke, R. J. ;
Neely, D. ;
Notley, M. ;
Gallegos, P. ;
Carroll, D. C. ;
Quinn, M. N. ;
Yuan, X. H. ;
McKenna, P. ;
Liseykina, T. V. ;
Macchi, A. ;
Borghesi, M. .
PHYSICAL REVIEW LETTERS, 2009, 102 (19)
[26]   Large-area laser-driven terahertz emitters [J].
Klatt, G. ;
Stephan, D. ;
Beck, M. ;
Demsar, J. ;
Dekorsy, T. .
ELECTRONICS LETTERS, 2010, 46 (26) :S24-S26
[27]   Optical response in a laser-driven quantum pseudodot system [J].
Kilic, D. Gul ;
Sakiroglu, S. ;
Ungan, F. ;
Yesilgul, U. ;
Kasapoglu, E. ;
Sari, H. ;
Sokmen, I. .
PHYSICA B-CONDENSED MATTER, 2017, 509 :10-15
[28]   Suppression of dissipation in a laser-driven qubit by white noise [J].
Yan, Lei-Lei ;
Zhang, Jian-Qi ;
Jing, Jun ;
Feng, Mang .
PHYSICS LETTERS A, 2015, 379 (39) :2417-2423
[29]   Relativistic ionization characteristics of laser-driven hydrogenlike ions [J].
Bauke, Heiko ;
Hetzheim, Henrik G. ;
Mocken, Guido R. ;
Ruf, Matthias ;
Keitel, Christoph H. .
PHYSICAL REVIEW A, 2011, 83 (06)
[30]   Incoherent synchrotron emission of laser-driven plasma edge [J].
Serebryakov, D. A. ;
Nerush, E. N. ;
Kostyukov, I. Yu. .
PHYSICS OF PLASMAS, 2015, 22 (12)