Combined detection of AC-electrokinetic effects: Experiments with three-axial chicken red blood cells

被引:5
作者
Gimsa, Jan [1 ]
Titipornpun, Kanokkan [2 ]
Stubbel, Marco [1 ]
Gimsa, Ulrike [3 ]
机构
[1] Univ Rostock, Dept Biophys, Gertrudenstr 11A, D-18057 Rostock, Germany
[2] Suratthani Rajabhat Univ, Fac Sci & Technol, Dept Phys, Surat Thani, Thailand
[3] Leibniz Inst Farm Anim Biol, Inst Behav Physiol, Dummerstorf, Germany
关键词
AC-electrokinetic fingerprinting; Broken spectra; Circular field orientation; Ellipsoidal single-shell model; Linear field orientation; ENTROPY PRODUCTION PRINCIPLE; ELLIPSOIDAL CELLS; ELECTROROTATION MEASUREMENTS; DIELECTRIC-SPECTROSCOPY; ELECTROMAGNETIC-FIELDS; LIGHT-SCATTERING; BIOLOGICAL CELLS; EUGLENA-GRACILIS; DIELECTROPHORESIS; ORIENTATION;
D O I
10.1002/elps.201800192
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Dielectrophoresis (DEP), electrorotation (ROT), and electro-orientation were used for the dielectric spectroscopy of nucleated three-axial chicken red blood cells (CRBCs). Because the different AC-electrokinetic effects are not mutually independent, their DEP and ROT spectra were combined in ranges separated by the reorientation of the CRBCs in the inhomogeneous linear DEP and circular ROT fields. This behavior can be qualitatively described by a single-shell ellipsoidal model. Whereas in linear fields, the maximum of the Clausius-Mossotti factor along the three axes determines the orientated axis, in circular fields, the minimum of the factor determines the axis perpendicularly orientated to the field plane. Quantitatively, it has not been possible to find a consistent parameter set for fitting the DEP and ROT spectra, as well as the reorientation frequencies. Our ellipsoidal CRBC standard model had semiaxes of a = 7.7 mu m, b = 4.0 mu m, and c = 1.85 mu m, a relative permittivity of 35 to 45 and conductivity of 0.36 to 0.04 S/m for the cytoplasm, combined with a specific capacitance of 10 to 14 mF/m(2) and a conductivity of 3500 S /m(2) for the cell membrane. The fits in different external conductivity ranges between external conductivities of 0.015 and 1.0 S/m were improved when the membrane capacitance was changed between 4 to 25 mF/m(2) depending on the method used. A similar transition was reflected in the effective properties of a three-shell spherical model containing an internal membranous sphere with the geometry of the CRBC nucleus. Our findings suggest that the simultaneous interpretation of various AC-electrokinetic spectra is a step toward the dielectric fingerprinting of biological cells.
引用
收藏
页码:2253 / 2261
页数:9
相关论文
共 48 条
[1]   DIELECTRIC-PROPERTIES OF MOUSE LYMPHOCYTES AND ERYTHROCYTES [J].
ASAMI, K ;
TAKAHASHI, Y ;
TAKASHIMA, S .
BIOCHIMICA ET BIOPHYSICA ACTA, 1989, 1010 (01) :49-55
[2]   EFFECTS OF ELECTROMAGNETIC-FIELDS ON MOTION OF EUGLENA-GRACILIS [J].
ASCOLI, C ;
BARBI, M ;
FREDIANI, C ;
PETRACCHI, D .
BIOPHYSICAL JOURNAL, 1978, 24 (03) :601-612
[3]   SEPARATION OF HUMAN BREAST-CANCER CELLS FROM BLOOD BY DIFFERENTIAL DIELECTRIC AFFINITY [J].
BECKER, FF ;
WANG, XB ;
HUANG, Y ;
PETHIG, R ;
VYKOUKAL, J ;
GASCOYNE, PRC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (03) :860-864
[4]  
Bohren C.F., 1983, ABSORPTION SCATTERIN, P530
[5]   Microdevices for manipulation and accumulation of micro- and nanoparticles by dielectrophoresis [J].
Dürr, M ;
Kentsch, J ;
Müller, T ;
Schnelle, T ;
Stelzle, M .
ELECTROPHORESIS, 2003, 24 (04) :722-731
[6]   ELECTROROTATION OF DUMBBELL SHAPED PARTICLES - THEORY AND EXPERIMENT [J].
EGGER, M ;
DONATH, E ;
KUZMIN, PI ;
PASTUSHENKO, VP .
BIOELECTROCHEMISTRY AND BIOENERGETICS, 1991, 26 (03) :383-393
[7]  
ENGEL J, 1988, STUD BIOPHYS, V125, P53
[8]  
FERRIS CD, 1977, ACTA BIOL ACAD SCI H, V28, P375
[9]  
Foster Kenneth R., 1996, P25
[10]   Miniaturized octupole cytometry for cell type independent trapping and analysis [J].
Fritzsch, Frederik S. O. ;
Blank, Lars M. ;
Dusny, Christian ;
Schmid, Andreas .
MICROFLUIDICS AND NANOFLUIDICS, 2017, 21 (08)