Inmost singularities and appropriate quadrature rules in the boundary element method

被引:0
作者
Theotokoglou, E. E. [1 ]
Tsamasphyros, G. [1 ]
机构
[1] Natl Tech Univ Athens, Fac Sci Appl, Dept Mech, Lab Strength Mat, Athens, Greece
来源
BOUNDARY ELEMENTS AND OTHER MESH REDUCTION METHODS XXIX | 2007年 / 44卷
关键词
singular integral equation; singularities; nearby poles; elasticity; quadrature formula; numerical integration; boundary element method;
D O I
10.2495/BE070141
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The solution of singular integral equations (SIEs), taking into consideration the particular behaviour of its regular kernel and its right hand side function, is investigated in this paper. In particular, the problems appearing in the solution of singular integral equations in the boundary element method are verified. It is shown that the behaviour of singular integral equations does not depend only on the behaviour of the regular kernel but on the behaviour of the unknown function.
引用
收藏
页码:141 / +
页数:2
相关论文
共 50 条
[31]   THE BOUNDARY AND SHELL ELEMENT METHOD [J].
KIRKUP, SM .
APPLIED MATHEMATICAL MODELLING, 1994, 18 (08) :418-422
[32]   The boundary element method of peridynamics [J].
Liang, Xue ;
Wang, Linjuan ;
Xu, Jifeng ;
Wang, Jianxiang .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2021, 122 (20) :5558-5593
[33]   An indirect elastostatic boundary element method with analytic bases [J].
Shen, Shih-yu .
COMPUTERS & STRUCTURES, 2011, 89 (23-24) :2402-2413
[34]   Numerical integration for symmetric Galerkin Boundary Element Method [J].
Panczyk, Beata ;
Sikora, Jan .
PRZEGLAD ELEKTROTECHNICZNY, 2011, 87 (12A) :36-39
[35]   A NEW METHOD FOR COUPLING OF BOUNDARY ELEMENT METHOD AND FINITE-ELEMENT METHOD [J].
MA, JM ;
LE, MF .
APPLIED MATHEMATICAL MODELLING, 1992, 16 (01) :43-46
[36]   Boundary element quadrature schemes for multi- and many-core architectures [J].
Zapletal, Jan ;
Merta, Michal ;
Maly, Lukas .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (01) :157-173
[37]   Generalised adaptive cross approximation for convolution quadrature based boundary element formulation [J].
Haider, A. M. ;
Rjasanow, S. ;
Schanz, M. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 175 :470-486
[38]   A boundary element method for multiple moving boundary problems [J].
Zerroukat, M ;
Wrobel, LC .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 138 (02) :501-519
[39]   A new method for the numerical evaluation of nearly singular integrals on triangular elements in the 3D boundary element method [J].
Johnston, Barbara M. ;
Johnston, Peter R. ;
Elliott, David .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 245 :148-161
[40]   Application of the Boundary Element Method to Solving the Plane Elastic Problems [J].
Garif’yanov A.F. ;
Gimadiev R.S. .
Russian Aeronautics, 2022, 65 (03) :467-473