Optimal Electric Power Take-off Strategy for Surface Riding Wave Energy Converter

被引:4
作者
Sheshaprasad, Shrikesh [1 ]
Naghavi, Farid [1 ]
Hasanpour, Shima [1 ]
Albader, Mesaad [1 ]
Gardner, Matthew C. [1 ]
Kang, HeonYong [2 ]
Toliyat, Hamid A. [1 ]
机构
[1] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA
[2] Texas A&M Univ, Dept Ocean Engn, College Stn, TX USA
来源
2022 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION (ECCE) | 2022年
关键词
Wave energy converter; power take-off strategies; linear generator; passive PTO; reactive PTO; binary PTO; binary-reactive PTO; EUROPE;
D O I
10.1109/ECCE50734.2022.9947696
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Surface Riding Wave Energy Converters (SR-WEC) are energy conversion devices that utilize a linear generator to harness wave energy at a low Levelized Cost of Energy (LCOE). The SR-WEC has its own set of challenges in terms of power take-off (PTO). This paper discusses the optimization of various types of electric power take-off (PTO) strategies, such as passive, reactive, and binary PTO, for the SR-WEC. A novel and optimal PTO strategy called the binary-reactive PTO, is proposed for the SR-WEC. The performance of each strategy is compared using results based on a given wave elevation dataset. A Simulink model is built to validate the time domain simulations with non-idealities of the linear generator. The PTO strategies are also implemented using a testbed with a permanent magnet linear generator. From the simulation results, it is seen that the novel binary-reactive provides the most optimal PTO for the SR-WEC application.
引用
收藏
页数:7
相关论文
共 19 条
[1]   Control of a Point Absorber Using Reinforcement Learning [J].
Anderlini, Enrico ;
Forehand, David I. M. ;
Stansell, Paul ;
Xiao, Qing ;
Abusara, Mohammad .
IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2016, 7 (04) :1681-1690
[2]  
Barstow S, 2008, GREEN ENERGY TECHNOL, P93, DOI 10.1007/978-3-540-74895-3_4
[3]  
Bedard R., 2007, N AM OCEAN ENERGY ST, V8, P2007
[4]   Wave energy in Europe:: current status and perspectives [J].
Clément, A ;
McCullen, P ;
Falcao, A ;
Fiorentino, A ;
Gardner, F ;
Hammarlund, K ;
Lemonis, G ;
Lewis, T ;
Nielsen, K ;
Petroncini, S ;
Pontes, MT ;
Schild, P ;
Sjöström, BO ;
Sorensen, HC ;
Thorpe, T .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2002, 6 (05) :405-431
[5]   A review of wave-energy extraction [J].
Falnes, Johannes .
MARINE STRUCTURES, 2007, 20 (04) :185-201
[6]   Wave Energy Converter Power Take-Off System Scaling and Physical Modelling [J].
Giannini, Gianmaria ;
Temiz, Irina ;
Rosa-Santos, Paulo ;
Shahroozi, Zahra ;
Ramos, Victor ;
Goteman, Malin ;
Engstrom, Jens ;
Day, Sandy ;
Taveira-Pinto, Francisco .
JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2020, 8 (09)
[7]   Design and Testing of a Linear Generator for Wave-Energy Applications [J].
Hodgins, Neil ;
Keysan, Ozan ;
McDonald, Alasdair S. ;
Mueller, Markus A. .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2012, 59 (05) :2094-2103
[8]  
Hussain HA, 2015, 2015 IEEE INTERNATIONAL ELECTRIC MACHINES & DRIVES CONFERENCE (IEMDC), P878, DOI 10.1109/IEMDC.2015.7409164
[9]   Performance evaluation of surface riding wave energy converter with linear electric generator [J].
Jin, Chungkuk ;
Kang, HeonYong ;
Kim, MooHyun ;
Bakti, Farid P. .
OCEAN ENGINEERING, 2020, 218
[10]  
Kang H., 2019, US Patent, Patent No. [10,352,290, 10352290]