Genome-wide identification and analysis of LEA_2 gene family in alfalfa (Medicago sativa L.) under aluminum stress

被引:4
|
作者
Zhang, Yujing [1 ]
Fan, Nana [1 ]
Wen, Wuwu [1 ]
Liu, Siyan [1 ]
Mo, Xin [1 ]
An, Yuan [1 ,2 ]
Zhou, Peng [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Agr & Biol, Shanghai, Peoples R China
[2] Minist Agr, Key Lab Urban Agr, Shanghai, Peoples R China
来源
FRONTIERS IN PLANT SCIENCE | 2022年 / 13卷
基金
中国国家自然科学基金;
关键词
alfalfa; LEA; gene family; chromosome; gene structure; aluminum stress; EMBRYOGENESIS ABUNDANT PROTEINS; ARABIDOPSIS-THALIANA; ACID; INDUCTION; TOLERANCE;
D O I
10.3389/fpls.2022.976160
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Late embryonic development abundant proteins (LEAs) are a large family of proteins commonly existing in plants. LEA_2 is the largest subfamily in the LEA, it plays an important role in plant resistance to abiotic stress. In order to explore the characteristics of LEA_2 gene family members in alfalfa (Medicago sativa L.), 155 members of LEA_2 (MsLEA_2) family were identified from alfalfa genome. Bioinformatics analysis was conducted from the aspects of phylogenetic relationship, chromosome distribution, chromosome colinearity, physical and chemical properties, motif composition, exon-intron structure, cis-element and so on. Expression profiles of MsLEA_2 gene were obtained based on Real-time fluorescent quantitative PCR (qRT-PCR) analysis and previous RNA-seq data under aluminum (Al) stress. Bioinformatics results were shown that the MsLEA_2 genes are distributed on all 32 chromosomes. Among them, 85 genes were present in the gene clusters, accounting for 54.83%, and chromosome Chr7.3 carries the largest number of MsLEA_2 (19 LEA_2 genes on Chr7.3). Chr7.3 has a unique structure of MsLEA_2 distribution, which reveals a possible special role of Chr7.3 in ensuring the function of MsLEA_2. Transcriptional structure analysis revealed that the number of exons in each gene varies from 1 to 3, and introns varies from 0 to 2. Cis-element analysis identified that the promoter region of MsLEA_2 is rich in ABRE, MBS, LTR, and MeJARE, indicating MsLEA_2 has stress resistance potential under abiotic stress. RNA-seq data and qRT-PCR analyses showed that most of the MsLEA_2 members were up-regulated when alfalfa exposed to Al stress. This study revealed that phylogenetic relationship and possible function of LEA_ 2 gene in alfalfa, which were helpful for the functional analysis of LEA_ 2 proteins in the future and provided a new theoretical basis for improving Al tolerance of alfalfa.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Genome-wide identification and expression analysis of the Auxin-Response factor (ARF) gene family in Medicago sativa under abiotic stress
    Chen, Fenqi
    Zhang, Jinqing
    Ha, Xue
    Ma, Huiling
    BMC GENOMICS, 2023, 24 (01)
  • [42] Genome-Wide Identification of the Q-type C2H2 Transcription Factor Family in Alfalfa (Medicago sativa) and Expression Analysis under Different Abiotic Stresses
    Pu, Jun
    Li, Mingyu
    Mao, Pei
    Zhou, Qiang
    Liu, Wenxian
    Liu, Zhipeng
    GENES, 2021, 12 (12)
  • [43] Genome-wide identification and expression analysis of 3-ketoacyl-CoA synthase gene family in rice (Oryza sativa L.) under cadmium stress
    Yang, Lingwei
    Fang, Junchao
    Wang, Jingxin
    Hui, Suozhen
    Zhou, Liang
    Xu, Bo
    Chen, Yujuan
    Zhang, Yuanyuan
    Lai, Changkai
    Jiao, Guiai
    Sheng, Zhonghua
    Wei, Xiangjin
    Shao, Gaoneng
    Xie, Lihong
    Wang, Ling
    Chen, Ying
    Zhao, Fengli
    Hu, Shikai
    Hu, Peisong
    Tang, Shaoqing
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [44] Genome-Wide Identification of NAC Transcription Factor Family and Functional Analysis of the Abiotic Stress-Responsive Genes in Medicago sativa L.
    Min, Xueyang
    Jin, Xiaoyu
    Zhang, Zhengshe
    Wei, Xingyi
    Ndayambaza, Boniface
    Wang, Yanrong
    Liu, Wenxian
    JOURNAL OF PLANT GROWTH REGULATION, 2020, 39 (01) : 324 - 337
  • [45] Genome-wide identification and expression analysis of TPP gene family under salt stress in peanut (Arachis hypogaea L.)
    Zhang, Yanfeng
    Cao, Minxuan
    Li, Qiuzhi
    Yu, Fagang
    PLOS ONE, 2024, 19 (07):
  • [46] Genome-Wide Investigation of the Cysteine Synthase Gene Family Shows That Overexpression of CSase Confers Alkali Tolerance to Alfalfa (Medicago sativa L.)
    Yuan, Yuying
    Song, Tingting
    Yu, Jinqiu
    Zhang, Wenkai
    Hou, Xiangyin
    Kong Ling, Zelai
    Cui, Guowen
    FRONTIERS IN PLANT SCIENCE, 2022, 12
  • [47] MYB transcription factors in alfalfa (Medicago sativa): genome-wide identification and expression analysis under abiotic stresses
    Zhou, Qiang
    Jia, Chenglin
    Ma, Wenxue
    Cui, Yue
    Jin, Xiaoyu
    Luo, Dong
    Min, Xueyang
    Liu, Zhipeng
    PEERJ, 2019, 7
  • [48] Genome-Wide Association Mapping of Loci Associated with Plant Growth and Forage Production under Salt Stress in Alfalfa (Medicago sativa L.)
    Liu, Xiang-Ping
    Yu, Long-Xi
    FRONTIERS IN PLANT SCIENCE, 2017, 8
  • [49] Genome-wide identification of pyrabactin resistance 1-like (PYL) gene family under phytohormones and drought stresses in alfalfa (Medicago sativa)
    Kun Wang
    Jiao Cheng
    Jing-Ru Chen
    Yan-Yan Luo
    Yu-Heng Yao
    Li-Li Nan
    BMC Genomics, 26 (1)
  • [50] Genome-Wide Identification and Expression of the GRAS Gene Family in Oat (Avena sativa L.)
    Wu, Rui
    Liu, Wenhui
    Liu, Kaiqiang
    Liang, Guoling
    Wang, Yue
    AGRONOMY-BASEL, 2023, 13 (07):