Phase behaviour and structure of a superionic liquid in nonpolarized nanoconfinement

被引:29
作者
Dudka, Maxym [1 ]
Kondrat, Svyatoslav [2 ]
Kornyshev, Alexei [3 ]
Oshanin, Gleb [4 ,5 ]
机构
[1] Inst Condensed Matter Phys, 1 Svientsitskii Str, UA-79011 Lvov, Ukraine
[2] Forschungszentrum Julich, IBG Biotechnol 1, D-52425 Julich, Germany
[3] Imperial Coll London, Dept Chem, Fac Nat Sci, London SW7 2AZ, England
[4] Univ Paris 06, Sorbonne Univ, UMR 7600, LPTMC, F-75005 Paris, France
[5] CNRS, UMR 7600, Lab Phys Theor Mat Condensee, F-75005 Paris, France
基金
英国工程与自然科学研究理事会;
关键词
ionic liquids; nanoconfinement; supercapacitors; phase transitions; Bethe-lattice approach; BLUME-CAPEL MODEL; ELECTRIC DOUBLE-LAYER; BETHE LATTICE CONSIDERATION; TEMPERATURE IONIC LIQUIDS; EFFECTIVE-FIELD THEORY; EMERY-GRIFFITHS MODEL; SPIN-1; ISING-MODEL; ENERGY-STORAGE; MONTE-CARLO; SUBNANOMETER PORES;
D O I
10.1088/0953-8984/28/46/464007
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The ion-ion interactions become exponentially screened for ions confined in ultranarrow metallic pores. To study the phase behaviour of an assembly of such ions, called a superionic liquid, we develop a statistical theory formulated on bipartite lattices, which allows an analytical solution within the Bethe-lattice approach. Our solution predicts the existence of ordered and disordered phases in which ions form a crystal-like structure and a homogeneous mixture, respectively. The transition between these two phases can potentially be first or second order, depending on the ion diameter, degree of confinement and pore ionophobicity. We supplement our analytical results by three-dimensional off-lattice Monte Carlo simulations of an ionic liquid in slit nanopores. The simulations predict formation of ionic clusters and ordered snake-like patterns, leading to characteristic close-standing peaks in the cation-cation and anion-anion radial distribution functions.
引用
收藏
页数:15
相关论文
共 121 条
[1]   Global Bethe lattice consideration of the spin-1 Ising model [J].
Akheyan, AZ ;
Ananikian, NS .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (04) :721-731
[2]   Potts models with invisible states on general Bethe lattices [J].
Ananikian, N. ;
Izmailyan, N. Sh ;
Johnston, D. A. ;
Kenna, R. ;
Ranasinghe, R. P. K. C. M. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (38)
[3]   PHASE-DIAGRAMS AND TRICRITICAL EFFECTS IN THE BEG MODEL [J].
ANANIKIAN, NS ;
AVAKIAN, AR ;
IZMAILIAN, NS .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1991, 172 (03) :391-404
[4]   An Ising spin-S model on generalized recursive lattice [J].
Ananikian, NS ;
Izmailian, NS ;
Oganessyan, KA .
PHYSICA A, 1998, 254 (1-2) :207-214
[5]  
[Anonymous], 2007, Dover books on physics
[6]  
[Anonymous], 1975, Sov. Phys.-JETP, DOI DOI 10.1142/9789814317344_0016
[7]  
Arora B.L., 1973, AIP C P, V10, P870
[8]   FINITE-SIZE SCALING STUDY OF THE TWO-DIMENSIONAL BLUME-CAPEL MODEL [J].
BEALE, PD .
PHYSICAL REVIEW B, 1986, 33 (03) :1717-1720
[9]   The Structure of Aqueous Solutions of a Hydrophilic Ionic Liquid: The Full Concentration Range of 1-Ethyl-3-methylinnidazolium Ethylsulfate and Water [J].
Bernardes, Carlos E. S. ;
Minas da Piedade, Manuel E. ;
Canongia Lopes, Jose N. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2011, 115 (09) :2067-2074
[10]   Lattice glass models -: art. no. 025501 [J].
Biroli, G ;
Mézard, M .
PHYSICAL REVIEW LETTERS, 2002, 88 (02) :4