Conical targets and pinch confinement for inertial fusion

被引:0
|
作者
Velarde, PM
MartinezVal, JM
Eliezer, S
Piera, M
Chacon, L
机构
关键词
D O I
10.1017/S0263034600010387
中图分类号
O59 [应用物理学];
学科分类号
摘要
Conical microducts and minithrottles can be used to accelerate micropellets of fusionable fuel up to very high speeds (similar to 10(8) cm/s). The central collision of two pellets flying in opposite directions can produce a hot plasma where fusion reactions are triggered. The main drawback of this scheme is the short confinement time provided by the external guide tube (throttle). To obtain high yield, an extra force of confinement is advisable. In this paper, the performance of fuel implosions within conical targets and the effect of ultrashort magnetic fields and pinch forces are analyzed. Although very high currents are needed to stretch the confinement time, modern technologies based on pulse-power machines and fast discharges induced by ultrashort lasers can provide a solution to this problem.
引用
收藏
页码:665 / 678
页数:14
相关论文
共 50 条
  • [41] Energy scaling of inertial confinement fusion targets for ignition and high gain
    Levedahl, WK
    Lindl, JD
    NUCLEAR FUSION, 1997, 37 (02) : 165 - 173
  • [42] Hohlraum targets driven by cluster ion beams for inertial confinement fusion
    Deutsch, C
    Tahir, NA
    Geb, O
    Maruhn, JA
    ASTROPHYSICS AND SPACE SCIENCE, 1998, 256 (1-2) : 151 - 159
  • [43] Ignition condition and gain prediction for perturbed inertial confinement fusion targets
    Kishony, R
    Shvarts, D
    PHYSICS OF PLASMAS, 2001, 8 (11) : 4925 - 4936
  • [44] ENERGY GAIN OF SPHERICAL-SHELL TARGETS IN INERTIAL CONFINEMENT FUSION
    PIRIZ, AR
    WOUCHUK, JG
    NUCLEAR FUSION, 1992, 32 (06) : 933 - 940
  • [45] Research progress of metallic function nanomaterials for inertial confinement fusion targets
    Tang, Yong-Jian
    Luo, Jiang-Shan
    Lei, Hai-Le
    Li, Xi-Bo
    Wu, Wei-Dong
    Yuanzineng Kexue Jishu/Atomic Energy Science and Technology, 2009, 43 (SUPPL. 1): : 109 - 115
  • [46] Research on the synthesis and characterization of perdeuterated acetaldehyde for inertial confinement fusion targets
    Zhang, Lin
    Li, Dayan
    Du, Kai
    Liu, Weiming
    Gao, Wende
    Xiao, Shuxing
    Xie, Rugang
    Yuanzineng Kexue Jishu/Atomic Energy Science and Technology, 1999, 33 (04): : 297 - 300
  • [47] BACK SCATTERING OF ELECTRONS FROM THE INERTIAL CONFINEMENT FUSION (ICF) TARGETS
    SAYASOV, Y
    HELVETICA PHYSICA ACTA, 1984, 57 (04): : 524 - 526
  • [48] Hohlraum targets driven by cluster ion beams for inertial confinement fusion
    Deutsch, C
    Tahir, NA
    Geb, O
    Maruhn, JA
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1998, 415 (03): : 693 - 697
  • [49] Cryogenic DT and D2 targets for inertial confinement fusion
    Sangster, T. C.
    Betti, R.
    Craxton, R. S.
    Delettrez, J. A.
    Edgell, D. H.
    Elasky, L. M.
    Glebov, V. Yu.
    Goncharov, V. N.
    Harding, D. R.
    Jacobs-Perkins, D.
    Janezic, R.
    Keck, R. L.
    Knauer, J. P.
    Loucks, S. J.
    Lund, L. D.
    Marshall, F. J.
    McCrory, R. L.
    McKenty, P. W.
    Meyerhofer, D. D.
    Radha, P. B.
    Regan, S. P.
    Seka, W.
    Shmayda, W. T.
    Skupsky, S.
    Smalyuk, V. A.
    Soures, J. M.
    Stoeckl, C.
    Yaakobi, B.
    Frenje, J. A.
    Li, C. K.
    Petrasso, R. D.
    Seguin, F. H.
    Moody, J. D.
    Atherton, J. A.
    MacGowan, B. D.
    Kilkenny, J. D.
    Bernat, T. P.
    Montgomery, D. S.
    PHYSICS OF PLASMAS, 2007, 14 (05)
  • [50] Advances in HYDRA and its applications to simulations of inertial confinement fusion targets
    Marinak, M. M.
    Kerbel, G. D.
    Koning, J. M.
    Patel, M. V.
    Sepke, S. M.
    McKinley, M. S.
    O'Brien, M. J.
    Procassini, R. J.
    Munro, D.
    IFSA 2011 - SEVENTH INTERNATIONAL CONFERENCE ON INERTIAL FUSION SCIENCES AND APPLICATIONS, 2013, 59