Brown Carbon Fuel and Emission Source Attributions to Global Snow Darkening Effect

被引:9
作者
Brown, Hunter [1 ,2 ]
Wang, Hailong [3 ]
Flanner, Mark [4 ]
Liu, Xiaohong [2 ]
Singh, Balwinder [3 ]
Zhang, Rudong [3 ]
Yang, Yang [5 ]
Wu, Mingxuan [3 ]
机构
[1] Univ Wyoming, Dept Atmospher Sci, Laramie, WY 82071 USA
[2] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA
[3] Pacific Northwest Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA
[4] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA
[5] Nanjing Univ Informat Sci & Technol, Jiangsu Collaborat Innovat Ctr Atmospher Environm, Sch Environm Sci & Engn, Jiangsu Key Lab Atmospher Environm Monitoring & P, Nanjing, Peoples R China
关键词
aerosol-snow interactions; brown carbon; SNICAR; climate model; CESM; biomass burning; COMMUNITY ATMOSPHERE MODEL; BLACK CARBON; QUANTIFYING SOURCES; ABSORBING AEROSOLS; CLIMATE-CHANGE; GRAIN SHAPE; ARCTIC SNOW; ALBEDO; DUST; ABSORPTION;
D O I
10.1029/2021MS002768
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Snow and ice albedo reduction due to deposition of absorbing particles (snow darkening effect [SDE]) warms the Earth system and is largely attributed to black carbon (BC) and dust. Absorbing organic aerosol (BrC) also contributes to SDE but has received less attention due to uncertainty and challenges in model representation. This work incorporates the SDE of absorbing organic aerosol (BrC) from biomass burning and biofuel sources into the Snow Ice and Aerosol Radiative (SNICAR) model within a variant of the Community Earth System Model. Additionally, 12 different emission regions of BrC and BC from biomass burning and biofuel sources are tagged to quantify the relative contribution to global and regional SDE. BrC global SDE (0.021-0.056 Wm(-2) over land area and 0.0061-0.016 Wm(-2) over global area) is larger than other model estimates, corresponding to 37%-98% of the SDE from BC. When compared to observations, BrC simulations have a range in median bias (-2.5% to +21%), with better agreement in the simulations that include BrC photochemical bleaching. The largest relative contributions to global BrC SDE are traced to Northern Asia (23%-31%), Southeast Asia (16%-21%), and South Africa (13%-17%). Transport from Southeast Asia contributes nearly half of the regional BrC SDE in Antarctica (0.084-0.3 Wm(-2)), which is the largest regional input to global BrC SDE. Lower latitude BrC SDE is correlated with snowmelt, in-snow BrC concentrations, and snow cover fraction, while polar BrC SDE is correlated with surface insolation and snowmelt. This indicates the importance of in-snow processes and snow feedbacks on modeled BrC SDE.
引用
收藏
页数:25
相关论文
共 96 条
[11]   Light-absorbing impurities in Arctic snow [J].
Doherty, S. J. ;
Warren, S. G. ;
Grenfell, T. C. ;
Clarke, A. D. ;
Brandt, R. E. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2010, 10 (23) :11647-11680
[12]   Black carbon and other light-absorbing particles in snow of central North America [J].
Doherty, Sarah J. ;
Dang, Cheng ;
Hegg, Dean A. ;
Zhang, Rudong ;
Warren, Stephen G. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2014, 119 (22) :12807-12831
[13]   The generation of gridded emissions data for CMIP6 [J].
Feng, Leyang ;
Smith, Steven J. ;
Braun, Caleb ;
Crippa, Monica ;
Gidden, Matthew J. ;
Hoesly, Rachel ;
Klimont, Zbigniew ;
van Marle, Margreet ;
van den Berg, Maarten ;
van der Werf, Guido R. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2020, 13 (02) :461-482
[14]   Enhanced solar energy absorption by internally-mixed black carbon in snow grains [J].
Flanner, M. G. ;
Liu, X. ;
Zhou, C. ;
Penner, J. E. ;
Jiao, C. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2012, 12 (10) :4699-4721
[15]   Springtime warming and reduced snow cover from carbonaceous particles [J].
Flanner, M. G. ;
Zender, C. S. ;
Hess, P. G. ;
Mahowald, N. M. ;
Painter, T. H. ;
Ramanathan, V. ;
Rasch, P. J. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2009, 9 (07) :2481-2497
[16]   Present-day climate forcing and response from black carbon in snow [J].
Flanner, Mark G. ;
Zender, Charles S. ;
Randerson, James T. ;
Rasch, Philip J. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2007, 112 (D11)
[17]   Evolution of brown carbon in wildfire plumes [J].
Forrister, Haviland ;
Liu, Jiumeng ;
Scheuer, Eric ;
Dibb, Jack ;
Ziemba, Luke ;
Thornhill, Kenneth L. ;
Anderson, Bruce ;
Diskin, Glenn ;
Perring, Anne E. ;
Schwarz, Joshua P. ;
Campuzano-Jost, Pedro ;
Day, Douglas A. ;
Palm, Brett B. ;
Jimenez, Jose L. ;
Nenes, Athanasios ;
Weber, Rodney J. .
GEOPHYSICAL RESEARCH LETTERS, 2015, 42 (11) :4623-4630
[18]   Satellite observations of desert dust-induced Himalayan snow darkening [J].
Gautam, Ritesh ;
Hsu, N. Christina ;
Lau, William K.-M. ;
Yasunari, Teppei J. .
GEOPHYSICAL RESEARCH LETTERS, 2013, 40 (05) :988-993
[19]   The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) [J].
Gelaro, Ronald ;
McCarty, Will ;
Suarez, Max J. ;
Todling, Ricardo ;
Molod, Andrea ;
Takacs, Lawrence ;
Randles, Cynthia A. ;
Darmenov, Anton ;
Bosilovich, Michael G. ;
Reichle, Rolf ;
Wargan, Krzysztof ;
Coy, Lawrence ;
Cullather, Richard ;
Draper, Clara ;
Akella, Santha ;
Buchard, Virginie ;
Conaty, Austin ;
da Silva, Arlindo M. ;
Gu, Wei ;
Kim, Gi-Kong ;
Koster, Randal ;
Lucchesi, Robert ;
Merkova, Dagmar ;
Nielsen, Jon Eric ;
Partyka, Gary ;
Pawson, Steven ;
Putman, William ;
Rienecker, Michele ;
Schubert, Siegfried D. ;
Sienkiewicz, Meta ;
Zhao, Bin .
JOURNAL OF CLIMATE, 2017, 30 (14) :5419-5454
[20]   Advanced Two-Moment Bulk Microphysics for Global Models. Part II: Global Model Solutions and Aerosol-Cloud Interactions [J].
Gettelman, A. ;
Morrison, H. ;
Santos, S. ;
Bogenschutz, P. ;
Caldwell, P. M. .
JOURNAL OF CLIMATE, 2015, 28 (03) :1288-1307